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Abstract 

 

Duration and start time of respirometry experiments have significant effects on the 

measurement of basal values for several commonly measured physiological variables 

(metabolic rate, evaporative water loss and body temperature). A longer measurement 

duration reduced values for all variables for all start times, and this was an effect of 

reduced animal activity rather than random sampling. However, there was also an 

effect of circadian rhythm on the timing of minimal physiological values. Experiment 

start time had a significant effect on time taken to reach minimal values for all 

variables, ranging from 4:00 h ± 38 min (body temperature, start time 23:00 h) to 8:54 

h ± 52 min (evaporative water loss, start time 17:00 h). It also influenced the time of 

day that minimal values were obtained, ranging from 22:24 h ± 40 min (carbon 

dioxide production, start time 15:00 h) to 06:00 h ± 57 min (oxygen consumption, 

start time 23:00 h), and the minimum values measured. Consequently both 

measurement duration and experiment start time should be considered in experimental 

design to account for both a handling and a circadian effect on the animal’s 

physiology. We suggest that experiments to measure standard physiological variables 

for small diurnal birds should commence between 17:00 h and 21:00 h, and 

measurement duration should be at least 9 h.  

 

Key words: basal metabolic rate, evaporative water loss, circadian effect, 

measurement duration, budgerigar, respirometry 
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Abbreviations 

 

α   active phase of the circadian cycle 

ρ   inactive phase of the circadian cycle 

BMR   basal metabolic rate 

Dexp   time of day at the minimal value 

EWL   evaporative water loss  

Sexp   experimental start time 

Tb    body temperature 

Texp   time taken to reach the minimal value 

VO2    rate of oxygen consumption 

VCO2    rate of carbon dioxide production 
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Introduction 

 

Comparative physiology examines processes or responses of different species under 

similar conditions, or of a single species under differing conditions (Withers 1992). 

Physiologists commonly compare energy expenditure and water requirements of 

animals, for example to compare requirements of particular species in different 

ecosystems (Hill et al. 2004), or adaptations of species to particular diets or other 

ecological or environmental variables (e.g. Elgar and Harvey 1987; McNab 1988; 

Williams et al. 1991; Lovegrove 2003; Cruz-Neto and Bozinovic 2004; Withers et al. 

2006; McNab 2009). Although animals in the field probably rarely function at basal 

levels of energy expenditure and water loss (Williams and Tielman 2000), basal 

measures made under standardised laboratory conditions are important because they 

are consistent measures that allow robust inter- and intra-specific comparisons (Koteja 

1991; McNab 1997; Hulbert and Else 2004; Speakman et al. 2004; Cooper and 

Withers 2009). However, for these standard measures of physiological variables to be 

of value, it is important that strict criteria for their measurement be rigorously adhered 

to. Accepted standard conditions for measurements of an endothermic animal to be 

considered basal are that it should be a non-reproductive adult, measured at rest and in 

a postabsorptive state, during its inactive period and within its thermoneutral zone 

(McNab 1997). 

 

Activity is one of the most important factors influencing the metabolic rate (MR) of 

an individual animal (Withers 1992), therefore one of the key conditions when 

measuring basal metabolic rate (BMR) is that the animal must be at rest in its inactive 

(ρ), rather than active (α) phase (Aschoff and Pohl 1970). Activity, and alertness 
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associated with handling and being placed in an unfamiliar environment, will increase 

MR. A conscious state implies a certain degree of muscular tension, which will 

increase MR, so a degree of wakefulness will have a variable effect on BMR 

(Benedict 1938).  Benedict (1938) suggested that animals should be allowed a period 

of 20-30 min within the experimental system immediately before BMR 

measurements, to ensure that they are at rest. Hayes et al. (1992) found that for short-

tailed field voles (Microtus agrestis), a measurement duration of only 30 min 

overestimated minimum oxygen consumption (VO2) by 13% compared to a duration 

of 6 h. For a variety of small marsupial species, VO2 was basal after an average of 4.3 

h, carbon dioxide production (VCO2) after 4.5 h, and evaporative water loss (EWL) 

after 5.2 h (Cooper and Withers 2009), and shorter measurement durations 

significantly overestimated these variables. However, these studies only examined the 

effect of experimental duration, and did not determine if the observed effects were 

due to the experimental duration per se, or to confounding effects of a circadian 

rhythm. 

 

The aim of our study was to measure standard physiological variables (VO2, VCO2, 

EWL, and body temperature; Tb) of a small diurnal bird, the budgerigar 

(Melopsittacus undulatus), to determine if there was an effect of measurement 

duration on estimates of these standard variables, and if this effect was due to the 

experimental duration, to the circadian rhythm, or to a combination of the two. We 

make recommendations from our results for the appropriate timing of experiments for 

small diurnal birds to obtain standardised minimum values of these commonly 

measured physiological variables. 
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Material and Methods 

 

Eleven adult budgerigars were obtained from a commercial aviary, and were housed 

indoors at an ambient temperature of approximately 22°C, with a 12:12 light:dark 

cycle (lights on at 07:00 h). Budgerigars were allowed to adjust to indoor conditions 

for at least two weeks prior to commencement of experiments. Except for 24 h before 

and during measurements, budgerigars were provided with ad lib budgerigar seed mix 

and water, and their diet was supplemented with fresh fruit, greens and cuttlebone. All 

birds conformed to the criteria for measuring BMR and standard EWL – they were 

non-reproductive adults, and for experiments were postabsorptive (McNab 1997). 

 

Prior to the commencement of experiments, five of the budgerigars were implanted 

with a passive implantable temperature transponder (TA E-mitter, Respironics) to 

continuously monitor Tb during experiments. Transponders were calibrated with a 

mercury thermometer (resolution 0.5°C) traceable to a national standard, at Tas from 

20°C to 40°C, in increments of 5°C, and corrected for drift over time, assuming linear 

drift between calibration periods. The transponders were sterilised in hibitane for 24 

h, then were rinsed with sterile saline prior to implantation. They were surgically 

implanted in the abdominal cavity under general anaesthesia (isoflurane in O2; 3% 

induction, 2% maintenance). Budgerigars were then given a recovery period of at 

least one week before experiments commenced.  

 

BMR (VO2 and VCO2) and standard EWL were measured using standard open flow-

through respirometry as described by Withers (2001). An individual budgerigar was 
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placed in an air-tight, 500 mL glass chamber, inside a dark temperature-controlled 

room, at 30°C (within the budgerigars’ thermoneutral zone; Weathers and 

Schoenbaechler 1976). Dry compressed air passed through the animal chamber at 400 

mL
-1

, controlled by an Aalborg 0-500 mL min
-1

 GFC17  or 0-1000 mL min
-1

 GFC17 

mass flow controller, to maintain levels of O2 above 20% and CO2 below 1%. 

Excurrent air passed over a Vaisala HMP45A temperature and relative humidity (RH) 

probe, then a 100 ml min
-1

 subsample was dried with a column of Drierite before 

passing through a Sable Systems CA-10A or Qubit S153 CO2 analyser, and a Taylor 

Servomex OA184 O2 analyser.  

 

Each budgerigar was measured at various experimental start times (see below), for a 

duration of 12 h. Individuals were measured in random order, with a minimum of four 

days to recover between each measurement; experimental start times were also 

randomised. Budgerigars were weighed immediately before being placed in the 

metabolic chamber, and again immediately after they were taken out, and the mean of 

the two masses was used for calculations. The O2 analyser was calibrated using 

compressed nitrogen (0% O2) and dry ambient air (20.95% O2); the CO2 analyser was 

calibrated with compressed nitrogen (0% CO2) and a certified gas mix (0.53% CO2; 

BOC, Perth, Western Australia); the calibration of the RH probe was confirmed with 

dried atmospheric air (<1% RH using Drierite) and by breathing on the sensor (100% 

RH). 

 

Analog outputs from the O2 analyser, CO2 analyser, and RH probe were interfaced to 

a PC using a Sable Systems UI2 A/D converter and recorded every 20 sec, using 

custom-written data acquisition software (Visual Basic v6; P. Withers). A baseline of 
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background O2, CO2 and H2O was measured for an hour before and after the 

budgerigar measurement period. Calculations of VO2, VCO2 and EWL were made 

using a custom-written program (Visual Basic v6; P. Withers) after Withers (2001). 

Tb was recorded every 10 sec throughout the experimental period, using Respironics 

VitalView ® data acquisition software (v4.2). The minimum stable 20-min mean 

VO2, VCO2, EWL and Tb were determined for each hour of the experiment (Withers 

2001; Cooper and Withers 2010). 

 

Measurement duration 

 

Time taken to obtain minimum values within the 12 h period was used to determine 

the effect of experimental duration on standard physiological variables. Minimum 20-

min mean VO2, VCO2, EWL and Tb values were converted to a percentage of the 

lowest hourly value. Longer experimental durations will inevitably result in lower 

values due to both a reduction in activity/alertness of the budgerigars over time 

(animal effect) and a higher probability of obtaining a lower value when more values 

are measured (sampling effect). To determine if the effect of measurement duration 

was due to animal or random sampling effects we compared the actual hourly 

minimum values with those obtained from random re-assortment of data (Cooper and 

Withers 2009). Data were randomly re-assorted 10,000 times using a custom-written 

Excel macro. The number of times that the actual mean hourly percentages were 

higher than the randomly re-assorted mean hourly percentage was interpreted as the 

probability that there was a significant animal effect. This would indicate whether the 

decline in hourly minimal values over time was the result of random fluctuations in 

measurements, or a systematic pattern of decline as a result of budgerigars being more 
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alert and awake at the commencement of experiments. We interpret P < 0.05 as 

indicating significance of a non-random animal effect, that is, evidence of a higher 

VO2 (or VCO2, EWL, Tb) for that measurement period than expected based on 

random fluctuations in metabolic rate. 

 

Experiment start time 

 

Each budgerigar was measured for 12 h at start times (Sexp) of 15:00 h, 17:00 h, 19:00 

h, 21:00 h and 23:00 h in random order. For analysis of circadian effects on the 

experimental duration required to attain minimal values, the actual time of day that 

minimum values occurred was determined for each Sexp. To analyse these actual times 

of day when minimal values were measured, we converted hours of the day to a linear 

rather than circular scale, from 12 to 35, with 12:00 h = 12, 13:00 h = 13, 00:00 h = 

24, 01:00 h = 25, etc.  

 

Statistics 

 

The effect of measurement duration was further examined by ANOVA using ranked 

data, with simple a priori contrasts (comparing each hour in turn with the final hour) 

to determine which hours were significantly different from 100%. For analysis of the 

effect of Sexp, multivariate repeated measures analysis of variance (RMANOVA) was 

used separately for VO2, VCO2, standard EWL and Tb, and polynomial contrasts were 

used to examine linear and quadratic effects over time (Rencher 1998). Polynomial 

contrast equations are presented for VO2, VCO2, and EWL, but could not be 

calculated for Tb. 
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SPSS (v17.0) and statistiXL (v1.8) were used for statistical analyses. A custom-

written Excel macro (P. Withers) was used for contrast analysis of the repeated 

measures. Statistical significance was judged at a significance level of P < 0.05. 

Results are reported as mean ± standard error, with sample size (n) = 11 for VO2, 

VCO2 and EWL, and n = 5 for Tb (unless stated otherwise). This research was 

approved by Curtin University’s Animal Ethics Committee (approval number 

N48/08). 

 

Results 

The body mass of the budgerigars ranged from 30.8 ± 0.47 to 47.5 ± 0.99 g; mean = 

36.8 ± 1.58 g. There was no significant difference in body mass of budgerigars 

between experimental treatments (F4,7 = 1.45, P = 0.312), but there was a difference 

between individuals (F10,44 = 24.04, P = < 0.001).  

 

Budgerigars were typically alert, with a high MR, EWL and Tb at the commencement 

of the experiment. Physiological variables declined sharply, and then more gradually 

as the experiment progressed (e.g. Fig. 1). 

 

Measurement duration 

 

Measurement duration had a significant effect on minimal VO2, VCO2, EWL and Tb 

for all start times (Fig. 2). Hourly minimum values were statistically indistinguishable 

from 100% by 7 h (Sexp 21:00 h) to 9 h (Sexp 15:00 h) for VO2, 6 h (Sexp 23:00 h) to 9 
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h (Sexp 17:00 h) for VCO2, 6 h (Sexp 23:00 h) to 10 h (Sexp 15:00 h and 17:00 h) for 

EWL, and 5 h (Sexp 23:00 h) to 8 h (Sexp 15:00 h and 17:00 h) for Tb. 

 

Random re-assortment of hourly minima indicated that there was a significant animal 

effect for all Sexp on measurement duration for VO2, VCO2, EWL and Tb (Fig. 2). 

Hourly minimal VO2 remained significantly higher than randomised means for 

between 4 h (Sexp 21:00 h; P = 0.022) and 10 h (Sexp 17:00 h; P = 0.042), and for 

VCO2 between 2 h (Sexp 21:00 h and 23:00 h; P < 0.039) and 8 h (Sexp 15:00 h and 

17:00 h; P < 0.021). For EWL, experimental means remained significantly higher 

than randomised means for between 1 h (Sexp 23:00 h; P < 0.001) and 10 h (Sexp 15:00 

h and 17:00 h; P = 0.002) and for Tb between 5 h (Sexp 23:00 h; P = 0.002) and 10 h 

(Sexp 15:00 h; P = 0.015). 

 

Experiment start time 

 

Minimal VO2 was significantly influenced by Sexp (RMANOVA F4,7 = 4.22, P = 

0.047) ranging from 1.8 ± 0.11 mL O2 g
-1

 h
-1

 (Sexp 17:00 h) to 2.2  ± 0.11 mL O2 g
-1

 h
-

1
 (Sexp 19:00 h; Fig. 3). There was a significant positive, linear relationship between 

Sexp and minimal VO2 by polynomial contrasts (t10 = 2.87, P = 0.016; VO2 = 1.65 + 

0.052 Sexp). There was also a significant difference in minimal VCO2 between the 

different Sexp (F4,7 = 5.19, P = 0.029), which ranged from 1.5 ± 0.05 mL CO2 g
-1

 h
-1

 

(Sexp 1500 h) to 1.8 ± 0.09 mL CO2 g
-1

 h
-1

 (Sexp 1900 h; Fig. 3). Polynomial contrasts 

indicated that the relationship between VCO2 and Sexp was positive and linear (t10 = 

4.71, P < 0.001; VCO2 = 1.46 + 0.029 Sexp). Minimal EWL ranged from 1.4 ± 0.12 

mg H2O g
-1

 h
-1

 (Sexp 21:00 h) to 1.6 ± 0.15 mg H2O g
-1

 h
-1

 (Sexp 17:00 h), but there 
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was no significant effect of Sexp (F4,7 = 0.84, P = 0.540; Fig. 3), and no significant 

polynomial contrasts. Body temperature ranged from 38.8 ± 0.36°C (Sexp 15:00 h) to 

39.2 ± 0.25°C (Sexp 23:00 h; Fig. 3). The overall RMANOVA model did not detect a 

difference in minimal Tb at different Sexp (F4,1 = 3.25, P = 0.392), but polynomial 

contrasts indicated a significant linear effect (t4 = 3.1, P = 0.036). Individual 

budgerigars did not differ in minimal VO2 (P = 0.056), but did differ significantly in 

minimal VCO2, EWL and Tb (P ≤ 0.010). 

 

Time taken to reach minimal (Texp) VO2 differed significantly with Sexp for 

budgerigars (RMANOVA F4,7 = 7.63, P = 0.011; Fig. 4), although polynomial 

contrasts did not reveal a significant linear, quadratic or cubic effect. Texp for VCO2 

and Tb did not differ with Sexp by RMANOVA (Tb, F4,7 = 3.07, P = 0.093; VCO2, F4,1 

= 13.50, P = 0.201; Fig. 4), but polynomial contrasts indicated a significant negative 

linear effect (Tb, t10 = 2.42, P = 0.036; VCO2, Texp = 8.33 – 0.34 Sexp; t4 = 7.59, P = 

0.002). Texp for EWL differed significantly with Sexp (RMANOVA F4,7 = 15.01, P = 

0.002; Fig. 4). Polynomial contrasts indicated that the relationship between Sexp and 

Texp to minimal EWL was negative and linear (t10 = 6.21, P < 0.001; Texp = 10.74 – 

0.48Sexp). Texp for Tb ranged from 4:00 h ± 38 min (Sexp 23:00 h) to 8:48 h ± 52 min 

(Sexp of 15:00 h; Fig. 4).  

 

The actual time of day at the minimum (Dexp) for VO2 ranged from 23:30 h ± 48 min 

(Sexp 17:00 h) to 06:00 h ± 60 min (Sexp 23:00 h), and this differed significantly with 

Sexp (RMANOVA F4,7 = 31.76, P < 0.001; Fig. 5). Polynomial contrasts indicated that 

the relationship between Sexp and Dexp to obtain minimal VO2, was positive and linear 

(t10 = 6.59, P < 0.001; Dexp = 21.04 + 0.68 Sexp). Dexp for VCO2 ranged from 22:24 h ± 
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40 min (Sexp 15:00 h) to 04:18 h ± 51 min (Sexp 23:00 h), and this differed 

significantly with Sexp (F4,7 = 11.22, P = 0.004; Fig. 5). Polynomial contrasts indicated 

a significant positive linear relationship between Sexp and Dexp for VCO2 [t10 = 6.46, P 

< 0.001; Dexp = 20.3 + 0.66 Sexp). Dexp for EWL ranged from 23:48 h ± 41 min (Sexp 

15:00 h and 17:00 h) to 06:00 h ± 58 min (Sexp 23:00 h), and this differed significantly 

with Sexp (F4,7 = 17.69, P = 0.001; Fig. 5). Polynomial contrasts indicated that this 

effect was positive and linear (t10 = 7.88, P < 0.001; Sexp = 22.7 + 0.52 Sexp). Dexp for 

Tb ranged from 23:48 h ± 52 min (Sexp of 15:00 h) to 04.00 h ± 38 min (Sexp of 23:00 

h; Fig. 5). Although these differences were not significant by RMANOVA (F4,1 = 

10.35, P = 0.229), polynomial contrasts indicated a significant quadratic effect (t4 = 

7.59, P = 0.002). Dexp did not differ between individual budgerigars (P ≥ 0.062). 

 

Discussion 

 

Our study is the first to investigate the effect of experiment duration on measurement 

of BMR, standard EWL and standard Tb for birds. As for mammals (Hayes et al. 

1992; Cooper and Withers 2009), we found highly significant effects of experimental 

duration on estimates of standard physiological variables. A significant animal effect, 

as indicated by variables being elevated significantly above randomised data, occurred 

for up to 10 h into measurement for VO2, up 8 h for VCO2, up to 10 h for EWL, and 

up to 5 h for Tb (depending on experiment start time). This demonstrates that alertness 

due to initial handling and becoming accustomed to the experimental environment has 

a significant effect on these physiological variables. A sufficient experimental 

duration is necessary to allow an animal to settle and rest in the experimental chamber 

for measurement of minimal values, and lower values over time are not simply a 
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mathematical inevitability from random sampling effects. The actual time required to 

obtain minimal values ranged from 4:00 h ± 38 min (Tb, Sexp 23:00 h) to 8:54 h ± 54 

min (EWL, Sexp 17:00 h). Therefore experimental durations greater than these periods 

are necessary to obtain reliable estimates, and shorter measurement durations will 

substantially overestimate BMR, EWL and Tb. 

 

The time required to measure the budgerigars’ BMR and standard Tb was not 

necessarily sufficient to obtain standard EWL; for example at start time 17:00 h, 6.6 ± 

0.84 h was required to obtain minimal VO2, but 8.9 ± 0.87 h was required for minimal 

EWL. This discrepancy between required duration for BMR and standard EWL was 

also demonstrated by Cooper and Withers (2009) for six marsupial species. The 

longer time required to obtain standard EWL in respirometry systems can be affected 

by air flow rate (and thus washout of water vapour) and whether the animal urinates 

or defecates during the experiment, which may uncouple EWL and MR (Cooper and 

Withers 2009). Use of mineral oil may reduce the time required to obtain minimal 

EWL during an experiment, but the relative “stickiness” of water vapour in a system, 

particularly if there are plastic components, may still increase washout time. 

Therefore, a sufficient experimental duration is even more important for obtaining 

minimal EWL, and short measurement durations are likely to produce more severe 

overestimations of EWL than other physiological variables (Cooper and Withers 

2009). 

 

The effects of measurement duration described by Hayes et al. (1992), Cooper and 

Withers (2009) and this study may interact with effects of circadian rhythm. Hayes et 

al. (1992) and Cooper and Withers (2009) did not consider the circadian rhythm as a 
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confounding factor; they attributed differences in the time to minimal values to effects 

of measurement duration when it could also have been influenced by timing of 

measurements with respect to the animal’s circadian rhythm. By commencing 

experiments at different times throughout the budgerigar’s rest phase, we have 

demonstrated here that circadian rhythms also influence the timing and magnitude of 

these minimum physiological values.  

 

 A circadian rhythm of MR and core Tb is well documented, being lower during the ρ 

phase (Sturkie 1965; Aschoff and Pohl 1970; McNab 1966; Prinzinger and Hanssler 

1980; McKechnie and Lovegrove 1999; Ellis and Gabrielsen 2001; Krauchi 2002). As 

Tb in endotherms is related to MR, we would expect minimal Tb to occur around the 

same time as minimal VO2. Budgerigars attained minimal Tb between 23:00 h and 

04:00 h, which is similar to when minimal VO2 occurred, and is consistent with 

circadian minima in other species (e.g. Williams et al. 1991). Budgerigars required a 

shorter period of time to obtain minimal values for physiological variables at later 

Sexp, where they were closer to the minimal point in their circadian rhythm at the 

commencement of the experiment. This demonstrates a clear influence of circadian 

rhythm on the timing of measurement of standard variables.  

 

The timing of minimal physiological variables for budgerigars is a combination of the 

significant effects of both measurement duration and circadian rhythm. Sexp 

influenced the time of day at which minimal values were obtained for all 

physiological variables measured, suggesting a handling effect. If there was no 

handling effect and only a circadian effect, then minimal values would have been 

obtained at the same time of day, regardless of experimental Sexp. This did not happen, 
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and there was clearly a disturbance effect with the budgerigars taking a number of 

hours to settle after introduction into the chamber despite variation in the time the 

experiment commenced. However, a shorter period of time was required to obtain 

minimal values for later Sexp, reflecting the circadian effect. Therefore, both circadian 

rhythm and measurement duration clearly play a role in the time required to obtain 

minimum values for physiological variables, and both need to be considered carefully 

when designing repiromentry experiments to measure standard variables. Overall, 

minimal values were lower for those experiments that commenced earlier. This 

presumably resulted from a late Sexp being close to the budgerigars’ circadian 

minimum which combined with an experiment duration effect meant that variables 

were still elevated due to the disturbance effect when the circadian minimum was 

reached. This resulted in higher values for standard variables than if birds were 

allowed to settle well before the minimum point in their circadian cycle. 

 

Previous measures for budgerigars of BMR (1.96 ml O2 g
-1

 h
-
1), Tb (39°C) and

 

standard
 
EWL (2.32 mg H2O g

-1
 h

-1
; Weathers and Schoenbaechler 1976) are higher 

than our estimates of BMR (1.83 ± 0.107 ml O2 g
-1

 h
-1

), Tb (38.8 ± 0.29 °C) and 

standard EWL (1.37 ± 0.109 mg H2O g
-1

 h
-1

), being 107 % (BMR) to 169 % (EWL) 

of our values. As Weathers and Schoenbaechler’s (1976) data were also for 

postabsorptive adult birds measured during the ρ phase, it is likely that their short 

measurement duration (birds were allowed to rest for at least an hour before VO2, 

VCO2 and EWL were calculated) contributed to these differences, although 

gravimetric measurement of EWL presumably contributed as well.  Other estimates of 

physiological variables for budgerigars are difficult to compare to these data as the 

conditions for standard measures were not met. Prinzinger and Hänssler (1980) 
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measured their budgerigars at Ta below thermoneutrality (20-25°C) and did not state if 

the birds were postabsorptive, and Greenwald et al. (1967) conducted their 

experiments during the α phase. 

 

We conclude that both measurement duration and circadian rhythm have a significant 

effect on measurement of standard physiological variables, and both need to be 

considered in experimental design. Based on our study of budgerigars, experiments 

for small diurnal birds should commence between 17:00 h and 21:00 h, and 

measurement duration should be at least 9 h, particularly when making initial 

measurements for a previously unmeasured species, to ensure minimal BMR and 

standard EWL and Tb are obtained. Experimental durations less than this are likely to 

overestimate BMR, standard EWL and Tb, and commencing experiments later may 

disrupt the bird too close to their minimum circadian point to achieve a true resting 

value.  
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Fig. 1 Example of an experimental time course for metabolic rate (measured as 

oxygen consumption), evaporative water loss and body temperature for a budgerigar 

during a 12 hour experiment commencing at 21:00 h. 
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Fig. 2 Effect of experimental duration (h) on the percent of experimental minimum 

for oxygen consumption (VO2), carbon dioxide production (VCO2), evaporative water 

loss (EWL), and body temperature (Tb) at different start times. Black circles are 

significantly different from the experimental minimum; white circles are not 

significantly different from the experimental minimum. Dashed lines are the mean 

percent of the experimental minimum for 10,000 random reallocations of hourly 

minimum values. An asterisk (*) indicates where experimental means become 

statistically indistinguishable from randomised means. Values are mean ± SE; n = 11 

for VO2, VCO2 and EWL, and n = 5 for Tb  
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Fig. 3 Effect of experimental start time on minimal oxygen consumption (VO2), 

carbon dioxide production (VCO2), evaporative water loss (EWL), and body 

temperature (Tb) of budgerigars. A line representing the repeated measures 

polynomial contrast is included where it is significant. Values are mean ± SE, n = 11 

for VO2, VCO2 and EWL, and n = 5 for Tb  
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Fig. 4 Time taken (h) to reach minimal oxygen consumption (VO2), carbon dioxide 

production (VCO2), evaporative water loss (EWL), and body temperature (Tb), at 

different experimental start times. A line representing the repeated measures 

polynomial contrast is included where it is significant. Values are mean ± SE., n = 11 

for VO2, VCO2 and EWL, and n = 5 for Tb  
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Fig. 5 Time of day that budgerigars attained minimal oxygen consumption (VO2), 

carbon dioxide production (VCO2), evaporative water loss (EWL), and body 

temperature (Tb), at different experimental start times. A line representing the 

repeated measures polynomial contrast is included for VO2, VCO2 and EWL, and a 

conventional quadratic line included for Tb. Values are mean ± SE, n = 11 for VO2, 

VCO2 and EWL, and n = 5 for Tb 

 


