12 research outputs found

    Autoreactive Preplasma Cells Break Tolerance in the Absence of Regulation by Dendritic Cells and Macrophages

    Get PDF
    The ability to induce antibody responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of Toll-like receptor-4 (TLR4), dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to antigen, but not naïve cells, suggesting a means to maintain tolerance during TLR4 stimulation, yet allow immunity. In this study, we identify TNFα as a third repressive factor, which together with IL-6 and CD40L, account for nearly all the repression conferred by DCs and MFs. Like IL-6 and sCD40L, TNFα did not alter B cell proliferation or survival. Rather, it reduced the number of antibody secreting cells. To address whether the soluble mediators secreted by DCs and MFs functioned in vivo, we generated mice lacking IL-6, CD40L and TNFα. Compared to wildtype mice, these mice showed prolonged anti-nuclear antibody responses following TLR4 stimulation. Further, adoptive transfer of autoreactive B cells into chimeric IL-6-/- × CD40L-/- × TNFα-/- mice showed that pre-plasma cells secreted autoantibodies independent of germinal center formation or extrafollicular foci. These data indicate that in the absence of genetic predisposition to autoimmunity, loss of endogenous IL-6, CD40L, and TNFα promotes autoantibody secretion during TLR4 stimulation

    Substantial and sustained reduction in under-5 mortality, diarrhea, and pneumonia in Oshikhandass, Pakistan : Evidence from two longitudinal cohort studies 15 years apart

    Get PDF
    Funding Information: Study 1 was funded through the Applied Diarrheal Disease Research Program at Harvard Institute for International Development with a grant from USAID (Project 936–5952, Cooperative Agreement # DPE-5952-A-00-5073-00), and the Aga Khan Health Service, Northern Areas and Chitral, Pakistan. Study 2 was funded by the Pakistan US S&T Cooperative Agreement between the Pakistan Higher Education Commission (HEC) (No.4–421/PAK-US/HEC/2010/955, grant to the Karakoram International University) and US National Academies of Science (Grant Number PGA-P211012 from NAS to the Fogarty International Center). The funding bodies had no role in the design of the study, data collection, analysis, interpretation, or writing of the manuscript. Publisher Copyright: © 2020 The Author(s).Peer reviewedPublisher PD

    Reduced diabetes in btk-deficient nonobese diabetic mice and restoration of diabetes with provision of an anti-insulin IgH chain transgene

    No full text
    Type 1 diabetes results from T cell-mediated destruction of insulin-producing beta cells. Although elimination of B lymphocytes has proven successful at preventing disease, modulation of B cell function as a means to prevent type 1 diabetes has not been investigated. The development, fate, and function of B lymphocytes depend upon BCR signaling, which is mediated in part by Bruton's tyrosine kinase (BTK). When introduced into NOD mice, btk deficiency only modestly reduces B cell numbers, but dramatically protects against diabetes. In NOD, btk deficiency mirrors changes in B cell subsets seen in other strains, but also improves B cell-related tolerance, as indicated by failure to generate insulin autoantibodies. Introduction of an anti-insulin BCR H chain transgene restores diabetes in btk-deficient NOD mice, indicating that btk-deficient B cells are functionally capable of promoting autoimmune diabetes if they have a critical autoimmune specificity. This suggests that the disease-protective effect of btk deficiency may reflect a lack of autoreactive specificities in the B cell repertoire. Thus, signaling via BTK can be modulated to improve B cell tolerance, and prevent T cell-mediated autoimmune diabetes

    Reduced Diabetes in btk

    No full text

    Prospective CT Screening for Lung Cancer in a High-Risk Population: HIV-Positive Smokers

    Get PDF
    Background:Epidemiological evidence suggests that HIV-infected individuals are at increased risk of lung cancer, but no data exist because large computed tomography (CT) screening trials routinely exclude HIV-infected participants.Methods:From 2006 to 2013, we conducted the world's first lung cancer screening trial of 224 HIV-infected current/former smokers to assess the CT detection rates of lung cancer. We also used 130 HIV-infected patients with known lung cancer to determine radiographic markers of lung cancer risk using multivariate analysis.Results:Median age was 48 years with 34 pack-years smoked. During 678 person-years, one lung cancer was found on incident screening. Besides this lung cancer case, 18 deaths (8%) occurred, but none were cancer related. There were no interim diagnoses of lung or extrapulmonary cancers. None of the pulmonary nodules detected in 48 participants at baseline were diagnosed as cancer by study end. The heterogeneity of emphysema across the entire lung as measured by CT densitometry was significantly higher in HIV-infected subjects with lung cancer compared with the heterogeneity of emphysema in those without HIV (p ⩽ 0.01). On multivariate regression analysis, increased age, higher smoking pack-years, low CD4 nadir, and increased heterogeneity of emphysema on quantitative CT imaging were all significantly associated with lung cancer.Conclusions:Despite a high rate of active smoking among HIV-infected participants, only one lung cancer was detected in 678 patient-years. This was probably because of the young age of participants suggesting that CT screening of high-risk populations should strongly consider advanced age as a critical inclusion criterion. Future screening trials in urban American must also incorporate robust measures to ensure HIV patient compliance, adherence, and smoking cessation

    Boosting Apoptotic Cell Clearance by Colonic Epithelial Cells Attenuates Inflammation In Vivo

    No full text
    Few apoptotic corpses are seen even in tissues with high cellular turnover, leading to the notion that the capacity for engulfment in vivo is vast. Whether corpse clearance can be enhanced in vivo for potential benefit is not known. In a colonic inflammation model, we noted that the expression of the phagocytic receptor Bai1 was progressively downmodulated. Consistent with this, BAI1-deficient mice had more pronounced colitis and lower survival, with many uncleared apoptotic corpses and inflammatory cytokines within the colonic epithelium. When we engineered and tested transgenic mice overexpressing BAI1, these had fewer apoptotic cells, reduced inflammation, and attenuated disease. Boosting BAI1-mediated uptake by intestinal epithelial cells (rather than myeloid cells) was important in attenuating inflammation. A signaling-deficient BAI1 transgene could not provide a similar benefit. Collectively, these complementary genetic approaches showed that cell clearance could be boosted in vivo, with potential to regulate tissue inflammation in specific contexts
    corecore