10 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Development of processing windows for HVOF carbide-based coatings

    No full text
    Optimized processing windows for spraying high-quality metal carbide-based coatings are developed using particle diagnostic technology. The cermet coatings were produced via the high-velocity oxygen fuel (HVOF) spray process and are proposed for service applications such as marine hydraulics. The traditional 'trial and error' method for developing coating process parameters is not technically robust, as well as being costly and time consuming. Instead, this contribution investigated the use of real-time monitoring of parameters associated with the HVOF flame jets and particles using in-flight particle diagnostics. Subsequently, coatings can be produced with knowledge concerning the molten particle size, temperature, and velocity profile. The analytical results allow identification of optimized coating process windows, which translate to coatings of lower porosity and improved mechanical performance

    Revisiting the Impact of GATS on Public Services

    No full text
    The impact of the WTO’s General Agreement on Trade in Services (GATS) on public services is the subject of intense debates. This chapter analyses the potential effects of the main GATS disciplines, such as most-favoured-nation treatment, market access, national treatment and rules on domestic regulation, on the provision of public services at the national and local level. It also examines the instruments WTO members are afforded by the GATS to mitigate those effects by exempting what they regard as public service from the GATS disciplines. In addition, this chapter examines the GATS overall approach to the notion of public services and its impact on the conceptualisation of public services beyond national borders through regional economic integration

    What Can International Relations Learn from International Law?

    No full text

    Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease

    No full text
    BACKGROUND: In a previous trial involving patients with early autosomal dominant polycystic kidney disease (ADPKD; estimated creatinine clearance, ≄60 ml per minute), the vasopressin V2-receptor antagonist tolvaptan slowed the growth in total kidney volume and the decline in the estimated glomerular filtration rate (GFR) but also caused more elevations in aminotransferase and bilirubin levels. The efficacy and safety of tolvaptan in patients with later-stage ADPKD are unknown. METHODS: We conducted a phase 3, randomized withdrawal, multicenter, placebo-controlled, double-blind trial. After an 8-week prerandomization period that included sequential placebo and tolvaptan run-in phases, during which each patient's ability to take tolvaptan without dose-limiting side effects was assessed, 1370 patients with ADPKD who were either 18 to 55 years of age with an estimated GFR of 25 to 65 ml per minute per 1.73 m2 of body-surface area or 56 to 65 years of age with an estimated GFR of 25 to 44 ml per minute per 1.73 m2 were randomly assigned in a 1:1 ratio to receive tolvaptan or placebo for 12 months. The primary end point was the change in the estimated GFR from baseline to follow-up, with adjustment for the exact duration that each patient participated (interpolated to 1 year). Safety assessments were conducted monthly. RESULTS: The change from baseline in the estimated GFR was -2.34 ml per minute per 1.73 m2 (95% confidence interval [CI], -2.81 to -1.87) in the tolvaptan group, as compared with -3.61 ml per minute per 1.73 m2 (95% CI, -4.08 to -3.14) in the placebo group (difference, 1.27 ml per minute per 1.73 m2; 95% CI, 0.86 to 1.68; P3 times the upper limit of the normal range) occurred in 38 of 681 patients (5.6%) in the tolvaptan group and in 8 of 685 (1.2%) in the placebo group. Elevations in the aminotransferase level were reversible after stopping tolvaptan. No elevations in the bilirubin level of more than twice the upper limit of the normal range were detected. CONCLUSIONS: Tolvaptan resulted in a slower decline than placebo in the estimated GFR over a 1-year period in patients with later-stage ADPKD. (Funded by Otsuka Pharmaceuticals and Otsuka Pharmaceutical Development and Commercialization; REPRISE ClinicalTrials.gov number, NCT02160145 .)
    corecore