67 research outputs found

    Form-function relationships in dragonfly mandibles under an evolutionary perspective

    Get PDF
    © 2017 The Author(s). Functional requirements may constrain phenotypic diversification or foster it. For insect mouthparts, the quantification of the relationship between shape and function in an evolutionary framework remained largely unexplored. Here, the question of a functional influence on phenotypic diversification for dragonfly mandibles is assessed with a large-scale biomechanical analysis covering nearly all anisopteran families, using finite element analysis in combination with geometric morphometrics. A constraining effect of phylogeny could be found for shape, the mandibular mechanical advantage (MA), and certain mechanical joint parameters, while stresses and strains, the majority of joint parameters and size are influenced by shared ancestry. Furthermore, joint mechanics are correlated with neither strain nor mandibular MA and size effects have virtually play no role for shape or mechanical variation. The presence of mandibular strengthening ridges shows no phylogenetic signal except for one ridge peculiar to Libelluloidea, and ridge presence is also not correlated with each other. The results suggest that functional traits are more variable at this taxonomic level and that they are not influenced by shared ancestry. At the same time, the results contradict the widespread idea that mandibular morphology mainly reflects functional demands at least at this taxonomic level. The varying functional factors rather lead to the same mandibular performance as expressed by the MA, which suggests a many-to-one mapping of the investigated parameters onto the same narrow mandibular performance space

    Bite Force in the Extant Coelacanth Latimeria: The Role of the Intracranial Joint and the Basicranial Muscle

    Get PDF
    SummaryThe terrestrialization process involved dramatic changes in the cranial anatomy of vertebrates. The braincase, which was initially divided into two portions by the intracranial joint in sarcopterygian fishes, became consolidated into a single unit in tetrapods and lungfishes [1–3]. The coelacanth Latimeria is the only extant vertebrate that retains an intracranial joint, which is associated with a unique paired muscle: the basicranial muscle. The intracranial joint has long been thought to be involved in suction feeding by allowing an extensive elevation of the anterior portion of the skull, followed by its rapid depression driven by the basicranial muscle [4–7]. However, we recently challenged this hypothesis [8, 9], and the role of the basicranial muscle with respect to the intracranial joint thus remains unclear. Using 3D biomechanical modeling, we show here that the basicranial muscle and the intracranial joint are involved in biting force generation. By flexing the anterior portion of the skull at the level of the intracranial joint, the basicranial muscle increases the overall bite force. This likely allows Latimeria to feed on a broad range of preys [10, 11] and coelacanths to colonize a wide range of environments during their evolution [4]. The variation in the morphology of the intracranial joint observed in Devonian lobe-finned fishes would have impacted to various degrees their biting performance and might have permitted feeding specializations despite the stability in their lower jaw morphology [12].Video Abstrac

    The biomechanical role of the chondrocranium and sutures in a lizard cranium

    Get PDF
    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae. We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocraniumare greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocraniumunless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending

    Hubungan Kadar Carcinoembryonic Antigen (Cea) Dan Albumin Serum Dengan Lokasi Kanker Kolorektal Studi Kasus Di Rsup Dr. Kariadi

    Full text link
    Latar belakang : Kolonoskopi masih menjadi alat deteksi utama untuk mengetahui lokasi kanker kolorektal. Diperlukan pemantuan petanda yang tidak invasif untuk membantu mengetahui lokasi kanker kolorektal. Kadar Carcinoembryonic antigen (CEA) dan albumin pada pasien kanker kolorektal dapat digunakan sebagai petanda lokasi dan prognosis.Tujuan : Untuk mengetahui hubungan kadar carcinoembryonic antigen (CEA) dan albumin serum dengan lokasi kanker kolorektal.Metode Penelitian : ini merupakan penelitian observasional dengan desain belah lintang. Data didapatkan dari rekam medik pasien kanker kolorektal di RSUP Dr. Kariadi dari Januari 2012-Desember 2015. Sejumlah 63 pasien menjadi subyek penelitian. Kadar CEA dan albumin dilihat dari hasil pemeriksaan laboratorium darah sebelum terapi. Lokasi tumor diketahui setelah pasien menjalani prosedur sigmoidoskopi atau kolonoskopi. Uji hipotesis yang digunakan adalah uji korelasi Spearman.Hasil : Subyek penelitian rerata berusia 50,50±13,69 tahun, dengan 49,2% pasien pria dan 50,8% wanita. Sebanyak 55,6% subyek penelitian mengalami peningkatan kadar CEA (>5 ng/mL). Sebanyak 52,4% subyek penelitian memiliki kadar albumin rendah, 46,0% memiliki kadar albumin normal, dan 1,6% memiliki kadar albumin tinggi. Lokasi tumor tersering berada di rektum (77,8%). Kadar CEA tidak berhubungan dengan lokasi tumor(rs = -0,019). Kadar albumin tidak berhubungan dengan lokasi tumor(rs= -0,060). Kadar CEA dan albumin tidak berhubungan dengan lokasi tumor(rs = -0,048).Kesimpulan : Tidak terdapat hubungan kadar CEA dan albumin dengan lokasi kanker kolorektal

    An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis silvestris catus)

    Get PDF
    © 2018 The Author(s). The falx cerebri and the tentorium cerebelli are two projections of the dura mater in the cranial cavity which ossify to varying degrees in some mammalian species. The idea that the ossification of these structures may be necessary to support the loads arising during feeding has been proposed and dismissed in the past, but never tested quantitatively. To address this, a biomechanical model of a domestic cat (Felis silvestris catus) skull was created and the material properties of the falx and tentorium were varied for a series of loading regimes incorporating the main masticatory and neck muscles during biting. Under these loading conditions, ossification of the falx cerebri does not have a significant impact on the stress in the cranial bones. In the case of the tentorium, however, a localized increase in stress was observed in the parietal and temporal bones, including the tympanic bulla, when a non-ossified tentorium was modelled. These effects were consistent across the different analyses, irrespective of loading regime. The results suggest that ossification of the tentorium cerebelli may play a minor role during feeding activities by decreasing the stress in the back of the skull

    Neurocranial development of the coelacanth and the evolution of the sarcopterygian head

    Get PDF
    The neurocranium of sarcopterygian fishes was originally divided into an anterior (ethmosphenoid) and posterior (otoccipital) portion by an intracranial joint, and underwent major changes in its overall geometry before fusing into a single unit in lungfishes and early tetrapods. Although the pattern of these changes is well-documented, the developmental mechanisms that underpin variation in the form of the neurocranium and its associated soft tissues during the evolution of sarcopterygian fishes remain poorly understood. The coelacanth Latimeria is the only known living vertebrate that retains an intracranial joint. Despite its importance for understanding neurocranial evolution, the development of the neurocranium of this ovoviviparous fish remains unknown. Here we investigate the ontogeny of the neurocranium and brain in Latimeria chalumnae using conventional and synchrotron X-ray microcomputed tomography as well as magnetic resonance imaging, performed on an extensive growth series for this species. We describe the neurocranium at the earliest developmental stage known for Latimeria, as well as the major changes that the neurocranium undergoes during ontogeny. Changes in the neurocranium are associated with an extreme reduction in the relative size of the brain along with an enlargement of the notochord. The development of the notochord appears to have a major effect on the surrounding cranial components, and might underpin the formation of the intracranial joint. Our results shed light on the interplay between the neurocranium and its adjacent soft tissues during development in Latimeria, and provide insights into the developmental mechanisms that are likely to have underpinned the evolution of neurocranial diversity in sarcopterygian fishes

    Comparative cranial biomechanics in two lizard species: impact of variation in cranial design

    Get PDF
    Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards

    The biomechanical role of the chondrocranium and the material properties of cartilage

    Get PDF
    The chondrocranium is the cartilage component of the vertebrate braincase. Among jawed vertebrates it varies greatly in structure, mineralisation, and in the extent to which it is replaced by bone during development. In mammals, birds, and some bony fish, most of the chondrocranium is replaced by bone whereas in lizards, amphibians, and chondrichthyan fish it may remain a significant part of the braincase complex in adulthood. To what extent this variation relates to differences in skull biomechanics is poorly understood. However, there have been examinations of chondrocranium histology, in vivo strain, and impact on rostrum growth following partial removal of the chondrocranium. These studies have led to suggestions that the chondrocranium may provide structural support or serve to dampen external loads. Advances in computing-power have also facilitated an increase in the number of three-dimensional computer-based models. These models can be analysed (in silico) to test specific biomechanical hypotheses under specified loading conditions. However, representing the material properties of cartilage is still problematic because these properties differ according to the speed and direction of loading. The relationship between stress and strain is also non-linear. Nevertheless, analyses to date suggest that the chondrocranium does not provide a vertical support in lizards but it may serve to absorb some loads in humans. We anticipate that future models will include ever more detailed representations of the loading, anatomy, and material properties, in tandem with rigorous forms of model validation. However, comparison among a wider range of vertebrate subjects should also be pursued, in particular larvae, juveniles, and very small adult animals

    Redescription of the hyoid apparatus and associated musculature in the extant coelacanth Latimeria chalumnae: functional implications for feeding

    No full text
    The coelacanth Latimeria is the only extant vertebrate in which the neurocranium is divided into an anterior and a posterior portion which articulate by means of an intracranial joint. This articulation is thought to allow an elevation of the snout up to 20-degree angle, which is supposed to enhance mouth gape and velocity, in turn allowing for a powerful suction. Several functional models have been proposed to explain the skull movement in Latimeria, but they disagree on the mechanisms responsible for mandibular depression and intracranial elevation, and more precisely on the role and mobility of the hyoid apparatus during these processes. We here show that the m. coracomandibularis spans ventrally to the palate-mandible joint, and is likely involved in mandibular depression. The hyoid apparatus is sheathed by several layers of ligaments, rendering extensive movements of the hyoid bones in the anteroposterior direction unlikely. Together with the manipulation of the 3D virtual model of the skull, these observations suggest that the hyoid arch is less mobile than previously proposed, and that the movements proposed in previous models are unlikely. In the light of our new observations, we suggest that the mechanisms proposed for explaining the intracranial elevation are incomplete. Moreover, we suggest that the extensive movements of the hyoid arch elements, which were thought to accompany intracranial elevation, are unlikely. In the absence of intracranial elevation, we propose that the movements of the hyoid mainly take place in the transverse plane, allowing the lateral expansion of the orobranchial chamber
    corecore