14 research outputs found

    Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis

    Get PDF
    IntroductionIdentification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases.MethodsHere, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers.ResultsOur results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers.ConclusionRecommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors

    Los sistemas de gobierno corporativo y su vigencia en la Argentina

    Get PDF
    Si bien el campo de estudio del Gobierno Corporativo es muy amplio, la mayor proporción de sus desarrollos ha tenido lugar en el ámbito de las empresas que adoptan forma societaria. En esos casos, se analizan las estructuras económicas de las empresas, y se alinean con las superestructuras jurídicas más adecuadas. En su seno, son estudiados los principales conflictos de intereses que moldean su funcionamiento, usualmente modelándolos como relaciones de agencia. Éstas, junto a las asimetrías informativas y a la incompletitud contractual típicas de este tipo de organizaciones (Hart, 1995), brindan el contexto donde surgen endógenamente los sistemas de Gobierno Corporativo.Facultad de Ciencias Económica

    In vitro Induction of Entamoeba histolytica Cyst-like Structures from Trophozoites

    Get PDF
    Inhibition of encystment can be conceived as a potentially useful mechanism to block the transmission of Entamoeba histolytica under natural conditions. Unfortunately, amoeba encystment has not been achieved in vitro and drugs inhibiting the formation of cysts are not available. Luminal conditions inducing encystment in vivo are also unknown, but cellular stress such as exposure to reactive oxygen species from immune cells or intestinal microbiota could be involved. A role for certain divalent cations as cofactors of enzymes involved in excystment has also been described. In this study, we show that trophozoite cultures, treated with hydrogen peroxide in the presence of trace amounts of several cations, transform into small-sized spherical and refringent structures that exhibit resistance to different detergents. Ultrastructural analysis under scanning and transmission electron microscopy revealed multinucleated structures (some with four nuclei) with smooth, thick membranes and multiple vacuoles. Staining with calcofluor white, as well as an ELISA binding assay using wheat germ agglutinin, demonstrated the presence of polymers of N-acetylglucosamine (chitin), which is the primary component of the natural cyst walls. Over-expression of glucosamine 6-phosphate isomerase, likely to be the rate-limiting enzyme in the chitin synthesis pathway, was also confirmed by RT-PCR. These results suggest that E. histolytica trophozoites activated encystment pathways when exposed to our treatment

    Sustained axon-glial signaling induces Schwann cell hyperproliferation, Remak bundle myelination, and tumorigenesis

    Get PDF
    Type III neuregulins exposed on axon surfaces control myelination of the peripheral nervous system. It has been shown, for example, that threshold levels of type IIIβ1a neuregulin dictate not only the myelination fate of axons but also myelin thickness. Here we show that another neuregulin isoform, type III-β3, plays a distinct role in myelination. Neuronal overexpression of this isoform in mice stimulates Schwann cell proliferation and dramatically enlarges peripheral nerves and ganglia -which come to resemble plexiform neurofibromas - but have no effect on myelin thickness. The nerves display other neurofibroma-like properties, such as abundant collagen fibrils and abundant dissociated Schwann cells that in some cases produce big tumors. Moreover, the organization of Remak bundles is dramatically altered; the small-caliber axons of each bundle are no longer segregated from one another within the cytoplasm of a nonmyelinating Schwann cell but instead are close packed and the whole bundle wrapped as a single unit, frequently by a compact myelin sheath. Because Schwann cell hyperproliferation and Remak bundle degeneration are early hallmarks of type I neurofibromatosis, we suggest that sustained activation of the neuregulin pathway in Remak bundles can contribute to neurofibroma development. Copyright © 2009 Society for Neuroscience.This work was supported by the Spanish Ministry of Health “Instituto de Salud Carlos III” Grant PI05/0535 and “Conselleria de Salut de la Generalitat Valenciana” Grant AP-002/06 (H.C.). This work was also partially supported by Spanish Ministerio de Ciencia e Innovación Grant CSD2007-00023. J.A.G. was supported by a predoctoral fellowship from the Spanish Ministry of Health (Instituto de Salud Carlos III, PI05/0535).Peer Reviewe

    Giardia intestinalis thymidine kinase is a high-affinity enzyme crucial for DNA synthesis and an exploitable target for drug discovery

    Get PDF
    Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis–infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis

    The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia

    Get PDF
    Giardia is an intestinal parasite that belongs to the earliest diverging branch of the eukaryotic lineage of descent. Giardia undergoes adaptation for survival outside the host's intestine by differentiating into infective cysts. Encystation involves the synthesis and transport of cyst wall constituents to the plasma membrane for release and extracellular organization. Nevertheless, little is known about the molecular events related to cyst wall biogenesis in Giardia. Among the components of the cyst wall there are two proteins that we have previously identified and characterized: CWP1 (26 kDa) and CWP2 (39 kDa). Expression of these proteins is coordinately induced, and both concentrated within encystation-specific secretory vesicles before their extracellular polymerization. Although highly similar to each other at the amino terminus, CWP2 includes a COOH-terminal 121-amino acid extension. Here, we show that this extension, rich in basic residues, is cleaved from CWP2 before cyst wall formation by an intracellular cysteine proteinase activity, which is induced during encystation like CWPs. Specific inhibitors prevent release of cyst wall materials, abolishing cyst wall formation. We also report the purification, cloning, and characterization of the encystation-specific cysteine proteinase responsible for the proteolytic processing of CWP2, which is homologue to lysosomal cathepsin C. Encystation-specific cysteine proteinase ESCP possesses unique characteristics compared with cathepsins from higher eukaryotes, such as a transmembrane domain and a short cytoplasmic tail. These features make this enzyme the most divergent cathepsin C identified to date and provide new insights regarding cyst wall formation in Giardia.Fil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Nores, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Slavin, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Carmona, Carlos. Universidad de la República. Facultad de Ciencias; UruguayFil: Conrad, John T.. National Institutes of Health; Estados UnidosFil: Mowatt, Michael R.. National Institutes of Health; Estados UnidosFil: Nash, Theodore E.. National Institutes of Health; Estados UnidosFil: Coronel, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Luján, Hugo D.. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; Argentin
    corecore