810 research outputs found

    Formation of High-Mass stars in an isolated environment in the Large Magellanic Cloud

    Full text link
    The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud (LMC). High-mass stars usually form in Giant Molecular Clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1-0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high-density and high-temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ~ 40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.Comment: 31 pages, 14 figures, PASJ accepted for publicatio

    Molecular hydrogen emission in the interstellar medium of the Large Magellanic Cloud

    Get PDF
    We present the detection and analysis of molecular hydrogen emission toward ten interstellar regions in the Large Magellanic Cloud. We examined low-resolution infrared spectral maps of twelve regions obtained with the Spitzer infrared spectrograph (IRS). The pure rotational 0--0 transitions of H2_2 at 28.2 and 17.1 Όm{\,\rm \mu m} are detected in the IRS spectra for ten regions. The higher level transitions are mostly upper limit measurements except for three regions, where a 3σ\sigma detection threshold is achieved for lines at 12.2 and 8.6 Όm{\,\rm \mu m}. The excitation diagrams of the detected H2_2 transitions are used to determine the warm H2_2 gas column density and temperature. The single-temperature fits through the lower transition lines give temperatures in the range 86−137 K86-137\,{\rm K}. The bulk of the excited H2_2 gas is found at these temperatures and contributes ∌\sim5-17% to the total gas mass. We find a tight correlation of the H2_2 surface brightness with polycyclic aromatic hydrocarbon and total infrared emission, which is a clear indication of photo-electric heating in photodissociation regions. We find the excitation of H2_2 by this process is equally efficient in both atomic and molecular dominated regions. We also present the correlation of the warm H2_2 physical conditions with dust properties. The warm H2_2 mass fraction and excitation temperature show positive correlations with the average starlight intensity, again supporting H2_2 excitation in photodissociation regions.Comment: Accepted for publication in MNRA

    Dust and gas in the magellanic clouds from the heritage herschel key project. II. Gas-to-dust ratio variations across interstellar medium phases

    Get PDF
    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), HI 21 cm, CO, and Hiα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380-130+250 ± 3 in the LMC, and 1200-420+1600 ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M⊙ pc-2 in the LMC and 0.03 M⊙ pc-2 in the SMC, corresponding to AV ∌ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on XCO to be 6 × 1020 cm-2 K-1 km-1 s in the LMC (Z = 0.5 Z⊙) at 15 pc resolution, and 4 × 1021 cm-2 K-1 km-1 s in the SMC (Z = 0.2 Z⊙) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∌2, even after accounting for the effects of CO-dark H2 in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H2. Within the expected 5-20 times Galactic XCO range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H2. Our analysis demonstrates that obtaining robust ISM masses remains a non-trivial endeavor even in the local Universe using state-of-the-art maps of thermal dust emissio

    Warm and Dense Molecular Gas in the N159 Region: 12CO J=4-3 and 13CO J=3-2 Observations with NANTEN2 and ASTE

    Full text link
    New 12CO J=4-3 and 13CO J=3-2 observations of the N159 region in the Large Magellanic Cloud have been made. The 12CO J=4-3 distribution is separated into three clumps. These new measurements toward the three clumps are used in coupled calculations of molecular rotational excitation and line radiation transfer, along with other transitions of the 12CO as well as the isotope transitions of 13CO. The temperatures and densities are determined to be ~70-80K and ~3x10^3 cm-3 in N159W and N159E and ~30K and ~1.6x10^3 cm-3 in N159S. These results are compared with the star formation activity. The N159E clump is associated with embedded cluster(s) as observed at 24 micron and the derived high temperature is explained as due to the heating by these sources. The N159E clump is likely responsible for a dark lane in a large HII region by the dust extinction. The N159W clump is associated with embedded clusters mainly toward the eastern edge of the clump only. These clusters show offsets of 20"-40" from the 12CO J=4-3 peak and are probably responsible for heating indicated by the derived high temperature. The N159W clump exhibits no sign of star formation toward the 12CO J=4-3 peak position and its western region. We suggest that the N159W peak represents a pre-star-cluster core of ~105M_sol which deserves further detailed studies. Note that recent star formation took place between N159W and N159E as indicated by several star clusters and HII regions, while the natal molecular gas toward the stars have already been dissipated by the ionization and stellar winds of the OB stars. The N159S clump shows little sign of star formation as is consistent with the lower temperature and somewhat lower density. The N159S clump is also a candidate for future star formation

    Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-Dust Ratio Variations across ISM Phases

    Get PDF
    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Halpha observations. In the diffuse atomic ISM, we derive the gas-to-dust ratio as the slope of the dust-gas relation and find gas-to-dust ratios of 380+250-130 in the LMC, and 1200+1600-420 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 Mo pc-2 in the LMC and 0.03 Mo pc-2 in the SMC, corresponding to AV ~ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on XCO to be 6x1020 cm-2 K-1 km-1 s in the LMC (Z=0.5Zo) at 15 pc resolution, and 4x 1021 cm-2 K-1 km-1 s in the SMC (Z=0.2Zo) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ~2, even after accounting for the effects of CO-dark H2 in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H2. Within the expected 5--20 times Galactic XCO range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H2

    Dust and Gas in the Magellanic Clouds from the Heritage Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm (Submillimeter) Excess Emission

    Get PDF
    The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations < 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations
    • 

    corecore