151 research outputs found

    Perceptual Interactions Between Electrodes Using Focused and Monopolar Cochlear Stimulation

    Get PDF
    In today’s cochlear implant (CI) systems, the monopolar (MP) electrode configuration is the most commonly used stimulation mode, requiring only a single current source. However, with an implant that will allow simultaneous activation of multiple independent current sources, it is possible to implement an all-polar (AP) stimulation mode designed to create a focused electrical field. The goal of this experiment was to study the potential benefits of this all-polar mode for reducing uncontrolled electrode interactions compared with the monopolar mode. The five participants who took part in the study were implanted with a research device that was connected via a percutaneous connector to a benchtop stimulator providing 22 independent current sources. The perceptual effects of the AP mode were tested in three experiments. In Experiment 1, the current level difference between loudness-matched sequential and simultaneous stimuli composed of 2 spatially separated pulse trains was measured as function of the electrode separation. Results indicated a strong current-summation interaction for simultaneous stimuli in the MP mode for separations up to at least 4.8 mm. No significant interaction was found in the AP mode beyond a separation of 2.4 mm. In Experiment 2, a forward-masking paradigm was used with fixed equally loud probes in AP and MP modes, and AP maskers presented on different electrode positions. Results indicated a similar spatial masking pattern between modes. In Experiment 3, subjects were asked to discriminate between across-electrode temporal delays. It was hypothesized that discrimination would decrease with electrode separation faster in AP compared to MP modes. However, results showed no difference between the two modes. Overall, the results indicated that the AP mode produced less current spread than MP mode but did not lead to a significant advantage in terms of spread of neuronal excitation at equally loud levels

    A Technical Comparison of Digital Frequency-Lowering Algorithms Available in Two Current Hearing Aids

    Get PDF
    Background: Recently two major manufacturers of hearing aids introduced two distinct frequency-lowering techniques that were designed to compensate in part for the perceptual effects of high-frequency hearing impairments. The Widex ‘‘Audibility Extender’ ’ is a linear frequency transposition scheme, whereas the Phonak ‘‘SoundRecover’ ’ scheme employs nonlinear frequency compression. Although these schemes process sound signals in very different ways, studies investigating their use by both adults and children with hearing impairment have reported significant perceptual benefits. However, the modifications that these innovative schemes apply to sound signals have not previously been described or compared in detail. Methods: The main aim of the present study was to analyze these schemes’technical performance by measuring outputs from each type of hearing aid with the frequency-lowering functions enabled and disabled. The input signals included sinusoids, flute sounds, and speech material. Spectral analyses were carried out on the output signals produced by the hearing aids in each condition. Conclusions: The results of the analyses confirmed that each scheme was effective at lowering certain high-frequency acoustic signals, although both techniques also distorted some signals. Most importantly, the application of either frequency-lowering scheme would be expected to improve the audibility of many sounds having salient high-frequenc

    The Sound Sensation of Apical Electric Stimulation in Cochlear Implant Recipients with Contralateral Residual Hearing

    Get PDF
    BACKGROUND: Studies using vocoders as acoustic simulators of cochlear implants have generally focused on simulation of speech understanding, gender recognition, or music appreciation. The aim of the present experiment was to study the auditory sensation perceived by cochlear implant (CI) recipients with steady electrical stimulation on the most-apical electrode. METHODOLOGY/PRINCIPAL FINDINGS: Five unilateral CI users with contralateral residual hearing were asked to vary the parameters of an acoustic signal played to the non-implanted ear, in order to match its sensation to that of the electric stimulus. They also provided a rating of similarity between each acoustic sound they selected and the electric stimulus. On average across subjects, the sound rated as most similar was a complex signal with a concentration of energy around 523 Hz. This sound was inharmonic in 3 out of 5 subjects with a moderate, progressive increase in the spacing between the frequency components. CONCLUSIONS/SIGNIFICANCE: For these subjects, the sound sensation created by steady electric stimulation on the most-apical electrode was neither a white noise nor a pure tone, but a complex signal with a progressive increase in the spacing between the frequency components in 3 out of 5 subjects. Knowing whether the inharmonic nature of the sound was related to the fact that the non-implanted ear was impaired has to be explored in single-sided deafened patients with a contralateral CI. These results may be used in the future to better understand peripheral and central auditory processing in relation to cochlear implants

    FolyĂłirat vagy gyƱjtemĂ©nyes kötet? (Csokonai DiĂ©tai Magyar MĂșzsĂĄja)

    Get PDF
    BACKGROUND: The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS: We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS: The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation

    Clinical utility of a nested nucleic acid amplification format in comparison to viral culture for the diagnosis of mucosal herpes simplex infection in a genitourinary medicine setting

    Get PDF
    BACKGROUND: Nested nucleic acid amplification tests are often thought too sensitive or prone to generatingfalse positive results for routine use. The current study investigated the specificity and clinicalutility of a routine multiplex nested assay for mucosal herpetic infections. METHODS: Ninety patients, categorised into those clinically diagnosed to (a) have and (b) not haveherpetic infection, were enrolled. Swabs from oral and ano-genital sites were assayed by thenested assay and culture and the results assessed against clinical evaluation for diagnosingherpetic infections; cell content was also recorded. RESULTS: Twenty-six and 64 patients were thought to (a) have and (b) not have mucosal herpeticinfection. Taking the clinical evaluation as indicating the presence of herpetic infection, thenested polymerase chain reaction and culture had respective sensitivities of 19/26 (73%) and12/26 (46%) (Χ(2) p = 0.02). There was no significant difference in specificities between nPCR62/64 (97%) and culture 63/64 (98%) (Χ(2) p = 1.0). Cell content was important for viraldetection by nPCR (Χ(2) p = 0.07) but not culture. Nesting was found necessary for sensitivity anddid not reduce specificity. Assay under-performance appeared related to sub-optimal cellcontent (20%) but may have reflected clinical over-diagnosis. The results suggest the need forvalidating specimen cell quality. CONCLUSIONS: This study questions the value of routine laboratory confirmation of mucosal herpetic infection. The adoption of a more discriminatory usage of laboratory diagnostic facilities for genital herpetic infection, taking account of cell content, and restricting it to those cases where it actually affects patient management, may be warranted

    Hypergraph models of biological networks to identify genes critical to pathogenic viral response

    Get PDF
    Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses

    A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    Get PDF
    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based" approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models

    The role of EGFR in influenza pathogenicity: Multiple network-based approaches to identify a key regulator of non-lethal infections

    Get PDF
    Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene’s involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≄500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≄500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500
    • 

    corecore