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Despite high sequence similarity between pandemic and seasonal influenza viruses,
there is extreme variation in host pathogenicity from one viral strain to the next.
Identifying the underlying mechanisms of variability in pathogenicity is a critical task for
understanding influenza virus infection and effective management of highly pathogenic
influenza virus disease. We applied a network-based modeling approach to identify
critical functions related to influenza virus pathogenicity using large transcriptomic and
proteomic datasets from mice infected with six influenza virus strains or mutants. Our
analysis revealed two pathogenicity-related gene expression clusters; these results were
corroborated by matching proteomics data. We also identified parallel downstream
processes that were altered during influenza pathogenesis. We found that network
bottlenecks (nodes that bridge different network regions) were highly enriched in
pathogenicity-related genes, while network hubs (highly connected network nodes)
were significantly depleted in these genes. We confirmed that this trend persisted
in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The
role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of
the bottleneck regulators with corroborating signals across transcript and protein
expression data, was tested and validated in additional mouse infection experiments.
We demonstrate that EGFR is important during influenza infection, but the role it
plays changes for lethal versus non-lethal infections. Our results show that by using
association networks, bottleneck genes that lack hub characteristics can be used to
predict a gene’s involvement in influenza virus pathogenicity. We also demonstrate the
utility of employing multiple network approaches for analyzing host response data from
viral infections.
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INTRODUCTION

Viruses that are newly introduced to the human population have
the potential to be highly pathogenic. While the pathogenicity
of these new strains tends to wane as adaptation progresses,
emerging viruses, such as highly pathogenic avian influenza
strains, are an ever-present threat to human health and the
global economy because it is difficult to predict when a
new pathogenic strain will appear. The 1918 influenza A
virus pandemic claimed 20–100 million lives worldwide (Peiris
et al., 2004). Multiple influenza pandemics have emerged
since. Most recently, human infections of H7N9 influenza,
which first emerged in the spring of 2013, have resulted in
1568 infections including 616 deaths (Food and Agriculture
Organization [FAO], 2019). Since 2003, H5N1 avian influenza
has caused 860 human infections with a mortality rate of
53% (World Health Organization [WHO], 2018). The 2009
H1N1 pandemic caused less severe disease in humans but
spread to nearly 200 countries (Michaelis et al., 2009) and
may have contributed to the deaths of an estimated 284,000
people (Dawood et al., 2012). The fact that influenza strains vary
greatly in pathogenicity underscores the need to understand the
underlying host mechanisms that contribute to the severity of
infection so that we are better prepared to alleviate the effects
of highly pathogenic strains. Despite the potential for pandemic
infection with a highly virulent, highly transmissible new strain
of influenza, the current understanding of these mechanisms
remains limited.

A major advantage of a systems biology approach to
pathobiology is the ability to identify novel, key elements
of a biological process, such what regulators are involved
in critical processes. High-throughput profiling methods (e.g.,
transcriptomics) provide powerful tools for examining how
entire systems respond to different perturbations such as acute
disease. Network reconstruction provides the opportunity to
utilize all available data and is a critically important tool
for representing complex sets of interactions. For biological
systems, network analysis has proven useful for analyzing genetic
interactions among genes, as well as protein–protein, protein–
DNA, and kinase–substrate interactions (Ideker and Krogan,
2012). In addition, network approaches have attempted to
identify regulatory associations between genes and proteins
by comparing expression patterns across multiple conditions
(Faith et al., 2007; McDermott et al., 2009, 2012). These
approaches may capture physical interactions but can also
identify more subtle, though equally important, regulatory
relationships between gene pairs or within gene clusters. Previous
work has shown that prioritization of key regulators based on
network topology is superior to simple ranking of differentially
expressed genes (McDermott et al., 2011). Our group and others
have demonstrated that genes occupying certain topological
positions in association networks play important regulatory
roles in the biological process being studied (Yu et al., 2007;
McDermott et al., 2009, 2016; Mitchell et al., 2013). Network
hubs are identified by the degree centrality metric, which is
the number of edges associated with any given node. Network
bottlenecks are identified by the betweenness centrality metric,

which is the number of shortest paths between all pairs of nodes
that pass through a given node. These are two of the most studied
topological features, yet it is unclear from the literature which of
these is the most effective predictor of regulatory function for
any given network construction approach or biological context.
It is also unclear what distinct regulatory roles each has; such
information is important to discern as it may be used to identify
targets for therapeutic intervention.

Typically, studies that attempt to uncover the underlying
mechanisms of pathogenicity simply compare a single high- and
low-pathogenicity strain or dose (Hatta et al., 2001; Kobasa et al.,
2007; Cilloniz et al., 2009; Safronetz et al., 2011; Tisoncik-Go
et al., 2016). While this approach may allow pathogenicity-related
host responses to be identified, it can be difficult to distinguish
between responses that are truly tied to pathogenicity and those
that are strain-specific. For this study, we use network clustering
and topology to compare six influenza strains and mutants of
varying pathogenicity (referred to herein as the pathogenicity
gradient) at multiple doses and four time points in the context of a
murine infection model. This allows us to identify pathogenicity-
related traits with greater certainty than in previous studies.
We utilize global transcriptomic and proteomic data from these
experiments, thus providing a more complete view of the layered
interaction between host and virus. We demonstrate a network-
based approach for identifying critical factors in influenza
pathogenesis and test our findings with a pharmacological
inhibitor during lethal and non-lethal infections.

MATERIALS AND METHODS

Data Deposition
Microarray data was deposited previously in the gene expression
omnibus (GEO) under the following accession numbers:
GSE33263: Influenza A/VN/1203/04 infection in mice with three
viral doses at 1, 2, 4, and 7 days (IM001); GSE37572: HA
avirulent mutation in A/Vietnam/1203/2004(H5N1) infection in
mice at 104 PFU at 1, 2, 4, and 7 days (IM004); GSE43301:
Influenza A/VN/1203/04 PB2-627E mutant infection in mice
with 104 PFU at 1, 2, 4, and 7 days (IM005); GSE43302:
Influenza A/VN/1203/04 PB2-627E mutant infection in mice
with 103 PFU at 1, 2, 4, and 7 days (IM005); GSE44441: Influenza
A/VN/1203/04 PB1-F2 mutant infection in mice with 104 PFU at
1, 2, 4, and 7 days (IM006); GSE44445: Influenza A/VN/1203/04
NS1trunc124 mutant infection in mice with two doses at 1, 2, 4,
and 7 days (IM007); GSE37569: Influenza A/CA04/2009 infection
in mice with four doses at 1, 2, 4, and 7 days (CA04M001);
GSE33266: SARS-CoV MA15 infection in mice with four viral
doses at 1, 2, 4, and 7 days (SM001); GSE50000: SARS-CoV
MA15, icSARS-CoV, or SARS BatSRBD infection in mice with
two viral doses at 1, 2, 4, and 7 days (SM003); GSE49262: SARS-
CoV MA15 or SARS deltaORF6 infection in mice with 1O5 PFU
at 1, 2, 4, and 7 days (SM012); GSE49263: SARS-CoV MA15 or
SARS nsp16 infection in mice with 105 PFU at 1, 2, 4, and 7 days
(SM014). Proteomics data for IM001, IM004, IM005, IM006, and
IM007 (described above) can be found at https://omics.pnl.gov/
project-data/systems-virology-contract-data.

https://omics.pnl.gov/project-data/systems-virology-contract-data
https://omics.pnl.gov/project-data/systems-virology-contract-data
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Construction of Pathogenicity Profile
We set out to build a synthetic pathogenicity profile that
represents the severity of the infection for each experimental
condition. The viruses used to construct the pathogenicity
gradient include the H1N1 strain, A/California/04/2009 (CA04),
from the 2009 pandemic,; the highly pathogenic H5N1 avian
strain, A/Vietnam/1203/2004 (VN1203); and four mutants
of VN1203: VN1203-HAavir (which lacks the multi-basic
cleavage site in the viral hemagglutinin protein that is
critical for extra-pulmonary viral spread), VN1203-PB2-627E
(which lacks a mammalian-adapting mutation that substantially
increases the replicative ability of the viral polymerase complex
in mammalian cells), VN1203-NS1trunc (which encodes a
C-terminal truncation in the effector domain of the NS1 host
response antagonist protein), and VN1203-PB1F2del (which
lacks expression of the PB1-F2 protein). Genes that mirror
this profile are hypothesized to be related to pathogenicity in
some way, a proposition similar to that given by Taylor et al.
(2016). To construct the profile, we scaled all six strains/mutants
proportional to their median lethal dose (MLD50) value, or the
amount of viral particles at which 50% of infected mice succumb
to infection (Figure 1A). We therefore assigned a score for each
strain corresponding to the log of the MLD50 and then adjusted
the scores to account for differences in administered doses across
studies. Since infection conditions for each strain included a dose
at 104 PFU, the corresponding strain’s log MLD50 was assigned
to all infection conditions at this dose. To make the score more
intuitive (high score = high pathogenicity), each log MLD50 was
subtracted from the maximum observed log MLD50. The intent
was to quantitatively relate the experimental conditions to each
other, with the expectation that genes related to pathogenicity
would manifest expression patterns similar to the pathogenicity
profile. To avoid negative values, an additional unit was added to
each score. Therefore, the pathogenicity level for a given infection
condition i, with dose di and the particular viral strain’s MLD50
mi, is given by:

Pi = 1+ log
(

mmax

mi

)
+ log

(
di

dcom

)
where mmax is the maximum observed MLD50, and dcom is
the dose common to all strains/mutants, i.e., the experimental
conditions for all infections included at least this dose, if not
others. Applying this calculation across all conditions yielded
the profile (Figure 1B). Since the array of conditions differed
somewhat between the transcripts and protein data, profiles
unique to each of these datasets were generated.

Data Pre-processing
Sample collection and microarray processing are described for
this dataset in Tchitchek et al. (2013). For our analysis, we selected
the probes that were (1) present on all arrays after quality control
filtering, (2) previously identified as significantly changed from
mock expression (q-value < 0.05), and (3) had a simultaneous
log2 fold change of at least 1.5 in at least one experimental
condition (Li et al., 2011). This resulted in the selection of
7471 probes for analysis. The results for proteomic data, sample

processing, capillary LC-MS/MS analysis, spectral matching, and
peptide-to-protein rollup are described in Tchitchek et al. (2013).
Missing value imputation was performed using a regularized
expectation maximization algorithm (Webb-Robertson et al.,
2015). Selected proteins were only those that were (Peiris
et al., 2004) detected in every experiment before imputation
(experiment = set of infections with one given strain), and (Food
and Agriculture Organization [FAO], 2019) significantly changed
from mock (p < 0.05) in at least one experimental condition; this
resulted in 1476 proteins that were used in our analysis.

For the correlation calculations (below), expression data from
selected time points were extracted and then mean-summarized
for each strain and dose. Some viruses received heavier
experimental coverage than others; we therefore expanded the
data compendium to equalize the influence each virus strain in
the pathogenicity gradient has on the correlation calculations by
duplicating the data from under-represented conditions so that
every strain was equally represented in the compendium.

Correlation
We calculated Pearson’s correlation using the expanded
expression profile for each gene/protein and the appropriately
expanded pathogenicity profile. Day 1, day 2, day 4, and day 7
designations were used to refer to the top 5% of pathogenicity-
correlated genes (both positive and negative correlation) using
individual time point data for correlation calculations.

Association Network Topology
Network inference was performed using the Context Likelihood
of Relatedness software tool as described (Mitchell et al., 2013).
The network centrality measures of betweenness and degree were
determined using the R igraph package.

Interactor Enrichment Analysis
To identify regulators of interest, we used the “Interactions By
Protein Function” and “Significant Interactions Within Set(s)”
tools in the MetaCore software package (Clarivate Analytics,
Philadelphia PA) to identify genes/proteins whose interactors
were enriched among pathogenicity-related proteins. A similar
approach was used for pathogenicity-related genes.

Cluster Analysis
We used the R weighted gene correlation network
analysis (WGCNA) package to identify clusters of genes
or proteins with behavioral similarity (Langfelder and
Horvath, 2008). Cluster identification was performed
using the blockwiseModules function with the following
parameter values for transcript cluster analysis:
power = 12, minModuleSize = 30, maxBlockSize = 8000,
reassignThreshold = 0, mergeCutHeight = 0.25, and
pamRespectsDendro = F.

Ethics Statement
All animal experiments and procedures were approved by the
University of Wisconsin (UW)-Madison School of Veterinary
Medicine Animal Care and Use Committee under relevant
institutional and American Veterinary Association guidelines.
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Biosafety
All experiments using replication competent H1N1 viruses were
performed in biosafety level 2 (BSL-2) or animal enhanced
biosafety level 2 (ABSL-2) containment laboratories at UW-
Madison. Experiments using replication competent H5N1
virus were performed in an ABSL-3+ containment laboratory
at UW-Madison. UW-Madison BSL-2, ABSL-2, and ABSL-
3+ laboratories are approved for use by the United States
(US) Centers for Disease Control and Prevention (CDC)
and the US Department of Agriculture. Experiments using
replication competent SARS-CoV were performed in an ABSL-
3+ containment laboratory at the University of North Carolina
at Chapel Hill (UNC). UNC BSL-2, ABSL-2, and ABSL-3+
laboratories are approved for use by the US CDC.

Cells
Madin-Darby canine kidney (MDCK) cells were propagated in a
minimum essential medium (MEM) containing 5% newborn calf
serum and were maintained at 37◦C in an atmosphere of 5% CO2.
Cell stocks are periodically restarted from early passage aliquots
and routinely monitored for mycoplasma contamination.

Viruses
The A/California/04/09 H1N1 virus (CA04) was provided by
the US CDC. The A/chicken/Vietnam/TY167/2011 (H5N1) virus
(TY167) was obtained through surveillance activities in Vietnam.
Stock viruses were generated by passaging an aliquot of the
original virus once in MDCK cells containing 0.6% bovine
serum albumin (BSA) fraction V (Sigma-Aldrich) and 1 µg/ml
tosyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin
(CA04) or in embryonated chicken eggs (TY167), as previously
described (Eisfeld et al., 2014). Stock virus titers were quantified
by plaque assay in MDCK cells using standard methods. SARS-
CoV was propagated and assayed for titer levels, as published
previously (Gralinski et al., 2013).

Mouse Infections
Nine- to ten-week-old female C57BL/6J mice (The Jackson
Laboratory) were administered 0 or 100 mg/kg of Gefitinib
(Tocris Bioscience) in 1% Tween-80 in phosphate-buffered
saline (PBS) by oral gavage 1 day prior to infection and each
subsequent day until the end of the experiment. Four mice were
used for each drug and viral dose combination. For infection,
mice were anesthetized by intraperitoneal (i.p.) injection of
ketamine and dexmedetomidine (45–75 mg/kg ketamine + 0.25–
1 mg/kg dexmedetomidine) and were intranasally inoculated
with 50 µl of PBS-containing viruses, as indicated in Figure 6
and the corresponding text in the “Effect of EGFR Inhibition on
Influenza Pathogenesis in Mice” section. Following inoculation,
dexmedetomidine was reversed by i.p. injection of atipamezole
(0.1–1 mg/kg). Subsequent to infection, individual body weights
and survival were monitored for up to 17 days, and mice
were humanely euthanized when exhibiting severe clinical
symptoms or at the end of the observation period. SARS-
CoV infections in mice were performed as previously published
(Gralinski et al., 2013).

Statistical Analysis
To model the trend in mice weight over time, we used linear
mixed effects models with a normal conditional distribution
and identity link on each time course. Fixed effects were
day, gefitinib level, and the interaction between day and
gefitinib level, while random effects for each mouse were
included to account for variability in the mice and for the
non-independent nature of the data over time. A second
model that did not include the gefitinib level and day
interaction terms was also fit; a likelihood ratio test was
then conducted to determine if the group slopes were
significantly different.

Due to the patterns of mouse weight over time, a single linear
model was not always sufficient to model the data; this was
determined by using linear splines to estimate change points
where separate linear models should be used to represent the
trend for different time ranges. Specifically, knot points were
identified by determining if adding an additional time point to the
linear model of an existing segment changed the model. If the new
point changed the model significantly, then a new knot point was
identified; otherwise, the time point was added to the segment.
After all knot points were found, a single random mixed effect
model was fit to each segment of data. TY167 at 103 PFU was
modeled as a single segment, CA04 at 102 PFU and 103 PFU in
three segments, and TY167 at 102 PFU in four segments. Separate
p-values were determined for each segment (as identified from
the knot points as boundaries), which are provided in Table 2.

RESULTS

Experimental Overview
Our overall strategy is depicted in Figure 2. We used
transcriptomics and proteomics data in conjunction with
pathogenicity data from the different virus strains/mutants
(Figures 2A,B) to identify pathways and individual
genes/proteins that were important for influenza pathogenicity.
Correlated gene modules in the transcriptomics were first
detected (Figure 2C) and compared with the pathogenicity
profile (Figure 2A) to identify gene modules whose behavior
linked them to pathogenicity. Individual proteins whose
behavior correlated with pathogenicity were incorporated into
interaction enrichment analysis, which identified genes whose
interaction neighbors from curated networks were enriched
among pathogenicity-correlated proteins (Figure 2D). These
results could be connected to host responses evident in the gene
clusters depicted in Figure 2C. An association network built
from mutual information of perturbed gene pairs (Figure 2E)
was used for topology analysis, which yielded network hubs and
bottlenecks. Lists of pathogenicity-correlated genes from early
and late time points (Figure 2F) were combined and compared to
network nodes with high hub and bottleneck scores. Comparison
of genes correlated with pathogenicity to network hubs and
bottlenecks showed significant overlap with network bottlenecks
(Figure 2G), but hubs were strikingly excluded (Figure 2H).
Examination of results from interaction enrichment (Figure 2D)
and network topology (Figures 2E–G) revealed epidermal
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FIGURE 1 | Target pathogenicity profile. (A) Median lethal dose 50 (MLD50) values for the six strains/mutants in the influenza virus pathogenicity gradient. Mouse
MLD50 data was previously published in Tchitchek et al. (2013). (B) Target pathogenicity profile based on MLD50 values.

growth factor receptor (EGFR) as a candidate for follow-up
experiments (Figure 2I).

Correlation With Pathogenicity
We utilized transcriptomic and proteomic datasets (represented
by Figure 2B) of mouse infection with six strains/mutants of
influenza at varying doses and times, as described in Tchitchek
et al. (2013). These viruses display varying degrees of virulence,
as assessed by the minimal dose that is lethal to 50% of animals
to which it is administered (MLD50, Figure 1A, see section
“Materials and Methods” for details). Samples were collected
at 1, 2, 4, and 7 days post-infection for global transcriptomics
and proteomics analysis of lung tissues relative to time-matched
mock-infected controls.

Clustering of Expression Data
To identify transcripts correlated with pathogenicity, we used the
WGCNA network clustering approach (Langfelder and Horvath,
2008) to cluster gene expression profiles across all experiments
into expression modules that represent groups of genes with
similar expression behaviors (Figure 2C). This approach further
affirms that the overall gene expression pattern of each module

has true biological meaning because each identified pattern is
manifested by many genes. The representative expression profile
of each module, or eigengene, can be correlated with clinical
measures or other metadata to identify modules of interest
(Langfelder and Horvath, 2008; Saris et al., 2009; Levine et al.,
2013). We thus applied WGCNA to our transcript dataset to
identify network modules related to influenza pathogenicity.
Figure 3A shows the correlations of all eigengene profiles to
pathogenicity. Two of the modules, pink and black, showed
much higher correlations than the others and were selected for
further analysis. The pink module is strongly positively correlated
with pathogenicity (Figure 3B). We found statistical enrichment
in plasminogen activation among the genes in this module,
particularly KLKB1 and coagulation factor X1; this suggests that
pathogenic influenza infection involves a perturbed coagulation
cascade. The black module (Figure 3C) is strongly negatively
correlated with pathogenicity and was strikingly enriched for
B-cell activation, implying that a diminished presence of B-cell
activity is related to pathogenesis in influenza. Interestingly,
a previous report showed that influenza caused apoptotic loss
of bone marrow B-cells in mice despite the complete lack of
viral particles detected in the bones (Sedger et al., 2002). Since
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FIGURE 2 | Overview of analysis strategy. Omics data (transcriptomics and proteomics) were used in conjunction with pathogenicity data from the different virus
strains/mutants (A,B). Correlated modules in the transcriptomics were detected (C) and compared with the pathogenicity profile (A) to identify gene modules whose
behavior linked them to pathogenicity. Individual proteins whose behavior correlated with pathogenicity were submitted to interaction enrichment analysis, which
looked for genes whose interaction neighbors from curated networks were enriched among pathogenicity-correlated proteins (D). An association network built from
mutual information of perturbed gene pairs (E) was used for topology analysis, which yielded network hubs and bottlenecks. Lists of pathogenicity-correlated genes
from early and late time points (F) were combined and compared to network nodes with high hub and bottleneck scores. Overlap was seen with network
bottlenecks (G) but not hubs (H). EGFR was identified as a candidate for follow-up experiments based on overlaps between interaction enrichment and
pathogenicity-related bottlenecks (I).

B-cells are known to both reside in and travel through the lungs
(Polverino et al., 2016), high-path flu may trigger death of lung
B-cells, resulting in previously unappreciated effects on host
response during these infections.

Transcriptome/Proteome Integration
To determine the extent to which proteome data validated
our transcriptomics findings, we used the matching protein
expression data to evaluate downstream pathway regulation
related to infection severity at different time points (Figure 2D).
We reasoned that correlation with pathogenicity could have
different meanings depending on which time points are used for
the correlation calculation. Correlated genes identified early in
the infection could be filling regulatory roles, while those from
later points are expected to be the downstream effects of earlier
events. Accordingly, we identified genes and proteins whose
expression profiles correlated with pathogenicity at individual
time points and designated the resulting lists as day 1, day 2,
day 4, and day 7. We then integrated the gene and protein

data using target enrichment to identify the regulatory targets
of protein pathway expression (Supplementary Tables S1, S2).
We found that Syk, Prkcb, and Ebf1 were day 1 genes and
that each of these is a regulator of B-cell activation/maturation.
Proteins known to be regulated by and/or bind to these regulators
were significantly enriched among day 1 (Syk) proteins, while
transcripts of genes regulated by Ebf1 and Prkcb were enriched
among day 1 and day 7 (Ebf1) or day 4 (Prkcb) genes.
Like the B-cell-related module from the cluster analysis, the
expression profiles of all three of these B-cell regulators showed
strong negative correlation to pathogenicity, thus reinforcing
the concept of decreased B-cell presence in the mouse lung
during severe influenza infection. Thus, our observation that
the presence of B-cell-related functions is tied to pathogenicity
is borne out by comparing results across time points and
data types. Similarly, we observed enrichment in proteins
regulated by coagulation factor XIII A1 (F13a1) in day 4
proteins, with the F13a1 transcript also among day 4 genes.
Transcripts for coagulation regulators Plat and Serpine1 as
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FIGURE 3 | WGCNA modules. (A) Pearson’s correlation values of WGCNA
modules with the pathogenicity profile. (B,C) Correlation of the “pink” (B) or
“black” (C) WGNCA module eigengene with the pathogenicity profile. Module
eigengenes are the principle component of the expression levels of modules
that contains similarly behaving genes, and therefore represent the expression
patterns across all genes in a module. Each bar represents the expression of
the module’s genes in an individual mouse infected with a particular strain of
influenza at a certain dose for a set number of days (1, 2, 4, or 7). Color
intensity represents strains/mutants with increasing pathogenicity, as in
Figure 2. Dashed lines indicate dose separations for a single strain. Orange
trace shows the pathogenicity profile.

well as their downstream targets were found among day 7
genes. These latter results validated our findings from transcript
expression that coagulation-related pathways are linked to
pathogenicity. In addition to findings related to regulation of
B-cell activity and coagulation, we also observed that direct
protein targets of EGFR activity are significantly enriched
among day 1 and day 4 proteins. In this way, integration
of transcriptomic and proteomic data enhances our analysis
and identifies the pathways most likely to be important for
infection severity.

From this analysis we constructed three lists of genes that were
identified as being correlated to pathogenicity in early infection
(Supplementary Table S3), late infection (Supplementary
Table S4), or both (Figure 2F and Supplementary Table S5).
We focused on genes that are correlated with pathogenicity both
early and late in the infection, for two reasons: (Peiris et al., 2004)
high correlations from two separate groups of data points for the
same gene means it is likely that these genes truly correlate with
pathogenicity, and (Food and Agriculture Organization [FAO],
2019) the overlap of the two groups helps yield the identity of
genes important both early and throughout the infection process.
Because influenza viral titers reach maximal levels by day 2,
regulatory responses are likely to occur in the first 24 h of
infection. We thus designated the day 1 results as “early” and
other time points as “late.” To identify genes with both early and
late infection correlation to pathogenicity, genes were identified
from the top 5% of pathogenicity-correlated genes at early time
points. The same procedure was used for late time points, and the
intersection of these two resulted in a list of early/late correlated
genes. The overlap between day 1 genes and the set of combined
day 2, day 4, and day 7 genes resulting in 54 genes (we refer to
these as early/late correlated genes). The overlap between early
and late was highly significant (p = 6.4e-13, Fisher test).

Association Network Topology Analysis
The clustering analysis provided a way to determine what
kinds of genes manifested expression behaviors connected
to pathogenicity. However, we were interested in identifying
regulatory mechanisms of influenza infection in the context
of pathogenicity. As a means of identifying key regulators, we
turned to an approach based on network topology. A growing
body of work has shown that network topology, or the
placement of nodes in the network structure, can be used
to identify entities with key regulatory roles (Yu et al.,
2007; Zhou and Liu, 2014; Narang et al., 2015; McDermott
et al., 2016). Of particular interest are network bottlenecks
and hubs, both of which have been shown to be enriched
for regulators under various circumstances (Yu et al., 2007;
McDermott et al., 2009, 2012, 2016; Zhou and Liu, 2014;
Narang et al., 2015). We built a mutual information-based
association network with transcript data (McDermott et al.,
2009, 2016; Mitchell et al., 2013) using 7471 genes deemed
significantly changed in at least one experimental condition
(strain, dose, or time; see section “Materials and Methods”) as
input; we also identified network hubs and bottlenecks, which
were defined as the top 5% of betweenness scores and degree
scores, respectively (Figure 2E).

Since network hub nodes are known to have critical systemic
functions, we hypothesized that pathogenicity-related genes may
be enriched in bottleneck or hub genes. To test this hypothesis, we
examined the statistical enrichment of the identified pathogenesis
sets with bottlenecks and hubs identified from the network
analysis. Interestingly, no overlap was discovered between
network hubs and early/late correlated genes (p = 0.11, two-
sided Fisher test). In contrast, we found these genes to be
significantly enriched in network bottlenecks (10 of the 54,
p = 2.9e-4, two-sided Fisher test), suggesting bottlenecks are
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TABLE 1 | Pathogenicity-related bottleneck genes.

Gene symbol Entrez Description Comment

EGFR 13649 Epidermal growth factor
receptor

Receptor tyrosine kinase

TBC1D10C 108995 TBC1 domain family,
member 10c

Inhibits Ras and calcineurin

CD22 12483 CD22 antigen B-cell/B-cell interactions

FCRL1 229499 Fc receptor-like 1 Ig receptor, promotes B-cell
activation and differentiation

ELOVL1 54325 Elongation of very long
chain fatty acids

Associated diseases
include peroxisomal
disease and
adrenoleukodystrophy

IKZF3 22780 IKAROS family zinc
finger 3

B-cell activation and
differentiation

MBD1 17190 Methyl-CpG binding
domain protein 1

Transcriptional repressor of
methylated DNA

TSPAN32 27027 Tetraspanin 32 Involved with hematopoietic
cell function, associated
with some cancers

KIF21B 16565 Kinesin family member
21B

ATP-dependent
microtubule-based motor
protein, associated with
inflammatory bowel disease
and multiple sclerosis

SLC10A6 75750 Solute carrier family 10
(sodium/bile acid
cotransporter family),
member 6

Lung sulfonated steroid
importer

important early regulators of pathogenesis (Figures 2G,H; names
and descriptions of the genes are found in Table 1). Notably,
three of these ten, CD22, FCRL1, and IKZF3, are closely
related to B-cell activation and overlapped with members of
the black WGCNA module. Another of these 10 genes is
EGFR (Figure 2I), which we found to have protein targets
enriched among correlated proteins at day 1 and day 4. To
determine if these results were biased by the selection of arbitrary
thresholds, we generated rankings for the degree, betweenness,
and correlation to pathogenicity of all genes, then produced
matrices of upper percentile thresholds by applying a Fisher
enrichment test for each threshold pairing. Remarkably, we
observed a dramatic exclusion (blue cells in Figure 4, upper right)
of hubs from correlated genes across a wide range of thresholds.
In contrast, bottlenecks showed a strong enrichment trend (red
cells in Figure 4, upper left). These results show that for influenza
infection, network hubs and bottlenecks have strikingly opposite
roles regarding pathogenicity of the virus.

Given that network bottlenecks have a unique relationship
with genes related to pathogenicity, we hypothesized that
network hubs might be enriched in genes involved in more
general aspects of infection. To test this, we identified the most
highly perturbed genes across the transcriptome by ranking genes
by their maximum fold change value across all data sets and
then built matrices that compared the maximum expression to
betweenness and degree, as before. As shown in the lower panels
of Figure 4, genes with high maximum expression overlapped
dramatically with network hubs but showed minimal enrichment

for bottlenecks. Thus, highly connected genes (hubs) are strongly
related to high expression and are strongly segregated from
pathogenicity-related genes, while network bottlenecks show a
strikingly different strong relationship to pathogenicity.

To determine if similar relationships exist in a distinct
infection system, we applied a similar analysis to a compendium
of four datasets obtained from mice infected with the SARS
coronavirus (SARS-CoV), one of which was previously published
by Gralinski et al. (2013). Mice were infected with WT SARS-
CoV and three attenuated mutants at varying doses and analyzed
for lung gene expression at one, two, four, and seven days post-
infection. Since lethality is not readily observed in attenuated
SARS-CoV mutants, we used animal weight loss at each time
point to represent pathogenicity at each infection condition. Also,
since viral replication kinetics are slower for SARS-CoV infection
compared to that of influenza virus, we used days 1 and 2 to
represent early infection and days 4 and 7 for late infection when
ranking genes for pathogenicity. When applying the approach
outlined above, we observed very similar results with SARS-
CoV to those seen with influenza virus (Figure 5). The same
patterns of exclusion and enrichment of hubs and bottlenecks
in regard to pathogenesis-correlated genes and high-expression
genes was shown to be even more dramatic in SARS-CoV.
Thus, the enrichment of pathogenicity-related genes in network
bottlenecks and their exclusion from network hubs appears to
be a widespread phenomenon characteristic of respiratory viral
infections in mice.

This finding is significant because the network betweenness
measurement we applied was in no way informed by our
pathogenicity results, yet it is able to significantly enrich for
pathogenicity-related genes. Thus, network bottlenecks but
not hubs facilitate the identification of critical regulators
as intervention targets. Further studies will determine
whether this approach is applicable in other infection
systems as well.

Interestingly, no overlap was found between pathogenicity-
related genes in influenza and SARS-CoV, but significant overlap
in bottlenecks (39 genes, p-value < 10−6) and hubs (203 genes,
p-value << 10−6) was found between the two viruses.

Effect of EGFR Inhibition on Influenza
Pathogenesis in Mice
Epidermal growth factor receptor has previously been shown
to play a role in influenza infection (Eierhoff et al., 2010; Ueki
et al., 2013) but has not been tied to pathogenicity. Because
we identified EGFR as a pathogenicity-correlated bottleneck
gene with apparent signaling effects evident in proteomics and
transcriptomics, we investigated the role of EGFR in pathogenesis
further with a mouse model. We treated mice for 14 days with
the EGFR inhibitor gefitinib and monitored infection-related
weight loss of treated and untreated animals to determine if
EGFR inhibition affected the course of infection. After one day of
treatment, mice were infected with one of two strains of influenza
virus at various doses: CA04 (102, 103, and 104 PFU) or the highly
pathogenic H5N1 avian strain, A/chicken/Vietnam/TY167/2011
(TY167) (101, 102, 103, and 104 PFU). The alternative H5N1
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FIGURE 4 | Overlap in biological measures and graph topology for influenza infection. Genes were ranked according to their correlation with the pathogenicity profile
(top panels), maximum fold change across all infection conditions (bottom panels), network betweenness (left panels), and network degree (right panels). The top
fraction from one ranking was compared to the top fraction in the other ranking using a two-tailed Fisher’s exact test as indicated. Numerical scale represents the
absolute value of the log10 p-value. For negative enrichment, these values were multiplied by –1.

strain was used since the MLD50 for VN-1203 is very low
and makes identification of drug effects difficult. Linear mixed
effects models were used to model the weight loss trajectories
from different infection conditions and to determine if the
weight loss slope differed between treatments (Table 2 and
Figure 6). Red lines represent segments of the data that could
be modeled with a single linear model; segments are separated
by knot points. For all doses of Cal/04 and the two lower
doses of TY167, drug treatment significantly increased infection
severity in some segments. However, higher doses of TY167
erased this trend and possibly partially reversed it. While all
animals died by day 13, weight loss was less rapid by a small
but significant margin in drug-treated animals at the highest
viral dose. Thus, EGFR appears to play a significant role in the
severity of non-lethal infections such that when it is inhibited,
the infection is more severe. However, when the threshold
is crossed to the highly lethal pathogenesis of H5N1, other
mechanisms potentially take over and supersede or override
the role of EGFR.

DISCUSSION

We used a multi-faceted approach to uncover critical
components of pathogenicity in an attempt to take full
advantage of the pathogenicity gradient in our study’s influenza
viruses and mutants. We compared the expression behavior of
genes and proteins to the pathogenicity measurements of viruses
in our study; this allowed us to identify which pathways and
features are most closely associated with pathogenicity. The
results provide clues to the underlying causes of the severity of
highly pathogenic strains.

Our group previously used this dataset to determine that
host responses to various infection conditions involve similar
pathways but are characterized by distinct kinetic expression
profiles (Tchitchek et al., 2013). In the current study, we use
a complementary approach to identify the genes and pathways
that are most closely associated with more pathogenic viruses
instead of identifying elements common to all. We show that
the network topology of association networks can be used to
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FIGURE 5 | Overlap in biological measures and graph topology for SARS-CoV infection. Significance matrices were generated for SARS-CoV infection experiments
as in Figure 4; however, weight loss values at each infection condition were used as a pathogenicity measurement. Weight loss correlations for early (days 1 and 2)
and late (days 4 and 7) were combined to obtain the pathogenicity ranking.

predict genes’ involvement in pathogenicity-related processes.
We used this knowledge in conjunction with other network
methods to identify genes and pathways associated with disease
severity. Our results show that signaling downstream of EGFR,
coagulation pathways, and B-cell down-regulation in the lung
are tied to infection severity in highly pathogenic influenza.
A follow-up validation study in mice confirms the role of EGFR
in influenza pathogenicity.

We first asked what broad trends in pathogenicity could
be identified using a network clustering approach. One of the
detected network clusters was strongly enriched for functions
related to B-cells and was negatively correlated with the
pathogenicity profile. This could be caused by either a general
down-regulation of gene expression in lung B-cells or a general
loss of B-cells from the lung. Although influenza may infect
B-cells expressing flu-specific B-cell receptors (Dougan et al.,
2013), initially naïve mice from our experiment are not likely
to have expanded virus-specific B-cells during the time frame of
our OMICs experiments. Thus, the effect is not likely a result
of gene regulation within infected B-cells and is more likely
due to a diminished B-cell lung population in highly pathogenic
infections. A previous report demonstrated apoptotic death of

bone marrow B-cells in flu-infected mice despite failing to show
that the virus was present in the bone marrow (Sedger et al.,
2002). Therefore, a systemic signal appears to target remote
B-cells and may target lung B-cells as well. While the adaptive
immune response is not likely to play a direct role during the
time frame of these experiments, a lower B-cell population,
for whatever reason, may signal important immune response
dynamics not previously understood. Histological or other
studies would be necessary to confirm the relationship between
severe infection and diminished B-cell numbers. The second
cluster was related to coagulation/fibrinolysis, which has shown
a precedent in previous work for an involvement in influenza
infection (Berri et al., 2013). Plasminogen (which opposes
clot formation) appears to promote destructive inflammation
during influenza infection. While we observed both pro- and
anti-coagulation factors that were positively correlated with
pathogenicity, these responses may represent a mixture of virus-
induced responses and host responses to a pathogenic state.

We then corroborated these results by identifying links
between pathogenicity-correlated genes and pathogenicity-
correlated targets of these genes. Since a dataset of this kind
deals strictly with the expression of genes and proteins, other
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TABLE 2 | Modeling strategy for weight loss results from EGFR inhibition study.

Experiment/ Knot

Viral load Approach point Results: p-value

CA04/102 PFU Data modeled in 3
segments

Day 5 Segment 1: 0.01979

Day 8 Segment 2: 0.7377

Segment 3: 0.07305

CA04/103 PFU Data modeled in 3
segments

Day 5 Segment 1: 0.01059

Day 8 Segment 2: 0.7170

Segment 3: 0.002228

CA04/104 PFU Data modeled in 3
segments

Day 6 Segment 1: 0.3498

Day 9 Segment 2: 0.9064

Segment 3: 0.03589

TY167/101 PFU Data modeled in 3
segments

Day 4 Segment 1: 0.09511

Day 9 Segment 2: 0.2128

Segment 3: 0.8031

TY167/102 PFU Data modeled in 4
segments

Day 3 Segment 1: 0.4661

Day 7 Segment 2: 0.6107

Day 10 Segment 3: 0.2895

Segment 4:.03364

TY167/103 PFU Data modeled in 1 segment NA 0.074

TY167/104 PFU Data modeled in 4
segments

Day 6 Segment 1: 0.02235

Segment 2: 0.0769

events such as protein–protein interactions, protein–mRNA
interactions, and phosphorylation/dephosphorylation events are
not directly monitored. Thus, a portion of the very early events
that determine the severity of an infection is not observable
with this dataset. By integrating transcript and protein data,
however, we were able to reveal links between upstream and
downstream effectors for EGFR signaling, coagulation regulation,
and B-cell down-regulation that would not be possible without
the availability of both data types. Since correlations between
transcript and protein expression profiles are consistently
observed to be low across biological systems (Vogel and Marcotte,
2012), validation of transcript expression using direct correlation
of protein abundances is generally not successful. However, we
believe that functional rather than direct correspondence of
transcripts and proteins represents an effective integration of
both data types. Hence, our study provides hypotheses for the
involvement of a number of genes/pathways in the pathogenicity
of influenza virus.

To learn more about regulatory mechanisms of influenza
infection, we determined whether topological positions in
association networks were related to pathogenicity. We found
that genes correlated with pathogenesis overlapped significantly
with bottlenecks but were dramatically excluded from hubs. This
result may be explained by the fact that network hubs are highly
connected to many other network nodes so that rather than
being involved only in highly pathogenic conditions, they tend
to be involved in all infection conditions. This is affirmed by the
observation that genes with the largest changes in gene expression
(therefore likely to exert the strongest influence on other genes)

were very strongly enriched for hub genes. On the other hand,
network bottlenecks represent nodes linking different areas of
the network and may identify genes that have an influence on
only a subset of the processes being monitored by the data.
Interestingly, in a network built with data from infections of
varying pathogenicity, the genes exerting these influences appear
to be involved in pathogenicity-related processes. The same
relationships between network topology, viral pathogenicity, and
gene expression that were observed for influenza virus were also
noted when we used a similar dataset of SARS-CoV infections,
thus further validating our analysis and demonstrating that these
relationships appear to apply to respiratory viruses in general.
We observed remarkably high (77% of possible) overlap between
hub genes in SARS-CoV and influenza virus networks; this is
consistent with the tendency of these genes to have a universal
influence during infectious disease. In contrast, bottlenecks and
pathogenicity genes showed much lower or non-existent overlap
between the two infection systems, suggesting that each virus
maintains unique mechanisms of host interaction. This finding is
important because it demonstrates that the identification of non-
hub bottlenecks may represent a way to naively identify virus-
specific pathogenicity-related genes when pathogenicity data is
not available. Previous work has shown that network bottlenecks
have important regulatory roles (Yu et al., 2007; McDermott et al.,
2009, 2011, 2012, 2016; Mitchell et al., 2013), but this is the first
time that an association has been seen between bottlenecks and
pathogenesis, with network hubs being conspicuously excluded.

To validate our findings, we treated mice with the EGFR
inhibitor gefitinib during infection with high- and low-path
influenza. Weight loss was significantly worsened when EGFR
was inhibited during low-path infection as well as during low
dose infection treatment with a highly pathogenic strain, all
of which were non-lethal infections. These results suggest that
care should be taken when administering gefitinib to patients
at risk of or currently infected with influenza. Interestingly,
however, high-dose, high-pathogenicity conditions displayed a
possible reversal of this trend, with gefitnib showing a significant
slowing of the weight loss trend at the highest dose. Thus,
the role of EGFR is dependent on the severity of the current
infection, indicating a role in pathogenicity as predicted by
our OMICS studies. EGFR stimulation has previously been
shown to play a role in promoting influenza particle uptake,
and EGFR inhibition diminished viral titer in infected mice
(Eierhoff et al., 2010; Ueki et al., 2013). However, the effect
of EGFR inhibition on pathogenicity was not determined in
previous studies. Viral titer measurements made during this
experiment would have allowed us to determine the effect of
the drug on viral replication simultaneously with pathogenicity,
allowing a clearer picture of the mechanisms at play during
EGFR inhibition. While the specific mechanisms are unknown,
our results point to a scenario where EGFR inhibition mainly
exacerbates pathogenicity at low severity, likely because of the
resulting blockage of host benefits such as wound-healing in
the lungs (Puddicombe et al., 2000). Interestingly, SARS-CoV
infection in the context of overactive EGFR results in pulmonary
fibrosis (Venkataraman et al., 2017), supporting the idea that
EGFR signaling supports tissue regrowth during respiratory
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FIGURE 6 | EGFR inhibition during influenza infection. Mice were exposed to the indicated dosages of gefitinib and influenza virus strains, then monitored for body
weight over the indicated days post-infection (dpi). Red vertical lines indicate knot points for linear modeling (see sections “Materials and Methods” and “Statistical
Analysis”). Green star: significance below 0.05; see Table 2 for segments with near-significant changes (segments with no significance indication had p-values above
0.1).
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infection. The beneficial effect that comes from preventing viral
particle uptake is only apparent under severe conditions when
the host is largely unable to repair damaged tissue, as is likely
the case in our high-dose, high-pathogenicity infection when
mice are moribund. Thus, EGFR activation is a double-edged
sword in influenza infection, promoting viral replication through
increased virion uptake or suppression of cytokine production
(Kalinowski et al., 2014) while simultaneously driving tissue
maintenance. This shift in the effect of EGFR inhibition across
pathogenicity provides new clues to the role of EGFR regulation
during lethal and non-lethal influenza virus disease.

In summary, we have used a unique combination of network-
based analyses of transcript and protein expression from our
pathogenicity gradient dataset to (1) identify B-cell down-
regulation and coagulation pathway up-regulation as being
likely associated with pathogenicity in influenza; (2) show that
identification of non-hub bottlenecks represents a way to use
association networks to enrich prediction of pathogenicity-
related genes and pathways; (3) validate the involvement of one
of these pathways, EGFR signaling; and (4) show that EGFR
inhibition appears to override a key host response mechanism
involved in non-lethal viral infections.
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