10 research outputs found

    A Neutrophil Timer Coordinates Immune Defense and Vascular Protection

    Get PDF
    Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S

    Analysis of transcription mechanisms that limit type I interferon responses

    No full text

    Protective role of neuronal and lymphoid cannabinoid CB 2 receptors in neuropathic pain

    No full text
    Cannabinoid CB2 receptor (CB2) agonists are potential analgesics void of psychotropic effects. Peripheral immune cells, neurons and glia express CB2; however, the involvement of CB2 from these cells in neuropathic pain remains unresolved. We explored spontaneous neuropathic pain through on-demand self-administration of the selective CB2 agonist JWH133 in wild-type and knockout mice lacking CB2 in neurons, monocytes or constitutively. Operant self-administration reflected drug-taking to alleviate spontaneous pain, nociceptive and affective manifestations. While constitutive deletion of CB2 disrupted JWH133-taking behavior, this behavior was not modified in monocyte-specific CB2 knockouts and was increased in mice defective in neuronal CB2 knockouts suggestive of increased spontaneous pain. Interestingly, CB2-positive lymphocytes infiltrated the injured nerve and possible CB2transfer from immune cells to neurons was found. Lymphocyte CB2depletion also exacerbated JWH133 self-administration and inhibited antinociception. This work identifies a simultaneous activity of neuronal and lymphoid CB2that protects against spontaneous and evoked neuropathic pain.This paper was supported by the following grants: European Commission NeuroPain, FP7-602891-2 to Rafael Maldonado. Instituto de Salud Carlos III RTA, RD16/0017/0020/FEDER to Rafael Maldonado. Ministerio de Ciencia, Innovación y Universidades SAF2017-84060-R FEDER to Rafael Maldonado. Generalitat de Catalunya SGR2017-669, ICREA Academia Award 2015 to Rafael Maldonado. Generalitat de Catalunya 2018 FI_B 00207 to Angela Ramírez-López. Polish Ministry of Science and Education 3070/7.PR/2014/2 to Ryszard Przewlocki. Spanish Ministry of Science, Innovation and Universities 2018-097189-B-C21 to Antonio Ferrer-Montiel. Universidad Miguel Hernandez UMH-PAR2019 to Antonio Ferrer-Montiel

    Frequent whole blood donations select for DNMT3A variants mediating enhanced response to erythropoietin

    No full text
    Background: Blood donation saves lives. Provided they are in good health, male volunteers can donate as often as six times per year from the age of 18 into their late sixties. The burden of blood donation is very unevenly distributed, with a small minority of altruistic individuals providing this critical resource. While the consequences of persistent iron depletion in blood donors have been studied in the context of cancer and coronary heart disease, potential effects of the erythropoietic stress from repetitive large-volume phlebotomy remain unexplored. We sought to investigate if and how repeated blood donations affect the clonal composition of the hematopoietic stem and progenitor cell (HSPC) compartment. Methods: 105 healthy, male individuals with an extensive blood donation history (median of 120 donations per donor; median age of 66 yrs.) were screened for the presence of clonal hematopoiesis (CH) using a sequencing panel covering 141 genes commonly mutated in human myeloid neoplasms. The control cohort consisted of 103 healthy, male donors with a median of 5 donations per donor and a median age of 63. Donors positive for CH were subsequently studied longitudinally. The pathogenicity of detected variants was compared using established scoring systems. Finally, to assess the functional consequences of blood-donation induced CH, selected CH mutations were introduced by CRISPR-mediated editing into HSPCs from human cord blood (CB) or bone marrow (BM). The effect of these mutations was tested under different stress stimuli using functional ex vivo long-term culture initiating cells (LTC-IC) assays. Results: Compared to the control cohort, frequent donors were significantly more likely to have mutations in genes encoding for epigenetic modifiers (44.7 vs. 22.3 %), most specifically in the two genes most commonly mutated in CH, DNMT3A and TET2 (35.2 vs. 20.3 %). However, no difference in the variant allele frequency (VAF) of detected mutations was found between the groups. Longitudinal analysis revealed that the majority of the mutations remained at a stable VAF over an observation period of approximately one year. Three DNMT3A variants from the frequent donor cohort were introduced into healthy HSPCs and functionally analyzed: All expanded in response to EPO, but none responded to LPS or IFNγ stimulation. This contrasted with the leukemogenic DNMT3A R882H mutation, which did not expand in the presence of EPO but instead responded strongly to inflammatory stimuli. Conclusions: Frequent whole blood donation is associated with a higher prevalence of CH driven by mutations in genes encoding for epigenetic modifiers, with DNMT3A and TET2 being the most common. This increased CH prevalence is not associated with a higher pathogenicity of the associated variants and is likely a result of the selection of clones with improved responsiveness to EPO under the condition of bleeding stress. Our data show that even highly frequent blood donations over many years is not increasing the risk for malignant clones further underscoring the safety of repetitive blood donations. To our knowledge, this is the first CH study analyzing a cohort of individuals known for their superior health and survival, able to donate blood until advanced age. Thus, our analysis possibly identified mutations associated with beneficial outcomes, rather than a disease condition, such as mutations in DNMT3A that mediated the improved expansion of HSPCs in EPO enriched environments. Our data support the notion of ongoing Darwinian evolution in humans at the somatic stem cell level and present EPO as one of the environmental factors to which HSPCs with specific mutations may respond with superior fitness

    The transcription factor NFAT5 limits infection-induced type I interferon responses

    Get PDF
    Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.This work was supported by the Agencia Estatal de Investigación, Spanish Ministry of Economy and Competitiveness, and FEDER (SAF2015-71363-R and RTI2018-095902-B-I00 to C. López-Rodríguez and J. Aramburu; and SAF2016-75505-R to A. Meyerhans and J. Argilaguet), and Fundació la Marató TV3 (1225-30 and 201619-30) to C. López-Rodríguez and J. Aramburu. We also acknowledge funding support from Generalitat de Catalunya (2014SGR1153 and 2017SGR888) and the Spanish Ministry of Economy and Competitiveness through the “María de Maeztu” Program for Units of Excellence in R&D (MDM2014-0370). H. Huerga Encabo was supported by a predoctoral fellowship of the Spanish Ministry of Education, Culture and Sports (FPU13/01798), and L. Traveset was supported by a predoctoral fellowship of the Spanish Ministerio de Economy, Industry and Competitiveness (BES-2015-074170). C. LópezRodríguez is a recipient of an ICREA Acadèmia award from Institució Catalana de Recerca i Estudis Avançats (Generalitat de Catalunya

    Macrophage-specific MHCII expression is regulated by a remote Ciita enhancer controlled by NFAT5

    No full text
    MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type-specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO), Agencia Estatal de Investigación, and European Regional Development Fund (SAF2012-36535, SAF2015-71363-R, and BFU2016-77961-P), and Fundació la Marató de TV3 (1225-30 and 201619-30). We also acknowledge funding support from Generalitat de Catalunya (2014SGR1153, 2017SGR888, and 2017SGR702) and MINECO through the “Unidad de Excelencia María de Maeztu” funded by MINECO (MDM-2014-0370). H. Huerga Encabo was supported by a predoctoral fellowship of the Spanish Ministerio de Educación, Cultura y Deporte (FPU13/01798). M. Tellechea was supported by fellowships from Fundació Catalunya-La Pedrera (2011) and Generalitat de Catalunya (FI-DGR program 2013). C. López-Rodríguez is a recipient of an ICREA Acadèmia award from Institució Catalana de Recerca i Estudis Avançats (ICREA, Generalitat de Catalunya)

    Macrophage-specific MHCII expression is regulated by a remote Ciita enhancer controlled by NFAT5

    No full text
    MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type-specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO), Agencia Estatal de Investigación, and European Regional Development Fund (SAF2012-36535, SAF2015-71363-R, and BFU2016-77961-P), and Fundació la Marató de TV3 (1225-30 and 201619-30). We also acknowledge funding support from Generalitat de Catalunya (2014SGR1153, 2017SGR888, and 2017SGR702) and MINECO through the “Unidad de Excelencia María de Maeztu” funded by MINECO (MDM-2014-0370). H. Huerga Encabo was supported by a predoctoral fellowship of the Spanish Ministerio de Educación, Cultura y Deporte (FPU13/01798). M. Tellechea was supported by fellowships from Fundació Catalunya-La Pedrera (2011) and Generalitat de Catalunya (FI-DGR program 2013). C. López-Rodríguez is a recipient of an ICREA Acadèmia award from Institució Catalana de Recerca i Estudis Avançats (ICREA, Generalitat de Catalunya)

    Loss of TET2 in human hematopoietic stem cells alters the development and function of neutrophils

    No full text
    Somatic mutations commonly occur in hematopoietic stem cells (HSCs). Some mutant clones outgrow through clonal hematopoiesis (CH) and produce mutated immune progenies shaping host immunity. Individuals with CH are asymptomatic but have an increased risk of developing leukemia, cardiovascular and pulmonary inflammatory diseases, and severe infections. Using genetic engineering of human HSCs (hHSCs) and transplantation in immunodeficient mice, we describe how a commonly mutated gene in CH, TET2, affects human neutrophil development and function. TET2 loss in hHSCs produce a distinct neutrophil heterogeneity in bone marrow and peripheral tissues by increasing the repopulating capacity of neutrophil progenitors and giving rise to low-granule neutrophils. Human neutrophils that inherited TET2 mutations mount exacerbated inflammatory responses and have more condensed chromatin, which correlates with compact neutrophil extracellular trap (NET) production. We expose here physiological abnormalities that may inform future strategies to detect TET2-CH and prevent NET-mediated pathologies associated with CH.</p
    corecore