191 research outputs found

    0341: AMPK exerts an insulin-sensitizing effect on cardiac glucose uptake by multiple molecular mechanisms including cytoskeleton reorganization

    Get PDF
    BackgroundInsulin-resistant cardiomyocytes are characterized by a decreased ability of insulin to stimulate glucose uptake. We have previously shown that the activation of AMPK by metformin or phenformin restores insulin-sensitivity in insulin-resistant cardiomyocytes. The aim of our present work is to understand by which molecular mechanisms AMPK exerts its insulin sensitizing effect. In this study we focused on the mTOR/p70S6K pathway and on cytoskeleton reorganization. mTOR/p70S6K, which is known to be inhibited by AMPK, is able to reduce insulin signaling via a negative feedback loop involving serine phosphorylation of IRS-1. On the other hand, cytoskeleton reorganization, which is a known target of AMPK, is responsible for the translocation of the glucose transporter GLUT4 to the plasma membrane.MethodsAdult rat cardiomyocytes were primary cultured and treated with different agents including insulin, AMPK activator (phenformin), mTOR inhibitor rapamycin and/or actin cytoskeleton inhibitor latrunculin B. Glucose uptake was assessed by detritiation of 2-3H-glucose.ResultsFirst, we tested if rapamycin was able to mimic AMPK activators. Similarly to phenformin, rapamycin increased the insulin-dependent phosphorylation of Akt involved in the regulation of glucose uptake. Despite the ability of rapamycin to induce this Akt over-phosphorylation, rapamycin was not able to restore the insulin-dependent stimulation of glucose uptake like phenformin did. On the other hand, latrunculin B abolished the insulin-sensitizing action of phenformin on glucose uptake, in insulin-sensitive as well as in insulinresistant cells.Conclusionsactin cytoskeleton reorganization but not mTOR/p70S6K, is involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. The role played by Small G proteins, known to be involved in the regulation of actin cytoskeleton is under investigation

    Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer

    Get PDF
    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Inhibition of glycogenolysis by a glucose analogue in the working rat heart

    No full text
    The effects of BAY o 1248, an inhibitor of alpha-amylo-1, 6-glucosidase, on glycogenolysis and post-ischemic functional recovery were investigated in isolated perfused rat hearts. Working rat hearts were perfused during 30 min with 11 mm glucose (controls) and, in some hearts, with 1 microM insulin or 5 mM lactate to increase their glycogen concentration. The hearts were then submitted to 10 min of no-flow ischemia and reperfused during 15 min with 11 mM glucose alone. Glycogen content was increased by 50% in hearts perfused with insulin or lactate. During ischemia, glycogen breakdown was similar in the control and lactate groups, but was abolished in the insulin-group. At reperfusion, functional recovery was improved in glycogen-loaded hearts compared to controls. When hearts were perfused with 1 mM BAY o 1248, added before ischemia, glycogenolysis was inhibited in the three groups and functional recovery was hampered in both the control and lactate groups. In the insulin group, however, the functional recovery was barely affected by BAY o 1248. We conclude that: (i) BAY o 1248 is an inhibitor of heart glycogen breakdown; (ii) the consequences of inhibition of ischemic glycogenolysis on post-ischemic functional recovery depend on the conditions; and (iii) the protective effect of insulin does not result from ischemic glycogenolysis

    Activation of nitric oxide synthase by ischaemia in the perfused heart

    No full text
    OBJECTIVE: Recent data have indicated that the activity of nitric oxide synthase (NO synthase), the enzyme producing NO from L-arginine, could be modified by ischaemia. The aim of the present work was therefore to study whether ischaemia activated NO synthase. METHODS: NO synthase activity was measured by the conversion of radioactive arginine into citrulline in extracts of isolated perfused rabbit hearts submitted to low-flow ischaemia and reperfusion. RESULTS: When measured in heart homogenates, NO synthase activity was significantly increased during ischaemia. This activation was already detectable after 5 min of ischaemia and was maintained during the whole ischaemic period. After cell fractionation, NO synthase was recovered in cytosolic and membrane fractions. The increase in NO synthase activity by ischaemia was related to an activation of the cytosolic activity, while the membrane-bound NO synthase activity remained constant. CONCLUSION: NO synthase activity in the heart is rapidly stimulated by ischaemia and this stimulation is maintained during the whole ischaemic episode. This activation is found only in the cytosolic fraction, whereas the particulate activity is not affected by ischaemia
    corecore