352 research outputs found
NOAO fundamental plane survey II: Age and metallicity along the red sequence from line-strength data
We present spectroscopic line-strength data for 4097 red-sequence galaxies in 93 low-redshift galaxy clusters and use these to investigate variations in average stellar populations as a function of galaxy mass. Our analysis includes an improved treatment of nebular emission contamination, which affects 10% of the sample galaxies. Using the stellar population models of D. Thomas and collaborators, we simultaneously fit 12 observed line-strength relations in terms of common underlying trends of age, [Z/H] (total metallicity), and [/Fe] (-element enhancement). We find that the observed line-strength relations can be explained only if higher mass red-sequence galaxies are, on average, older, more metal-rich, and more -enhanced than lower mass galaxies. Quantitatively, the scaling relations are age0.59±0.13, Z/H0.53±0.08, and /Fe0.31±0.06, where the errors reflect the range obtained using different subsets of indices. Our conclusions are not strongly dependent on which Balmer lines are used as age indicators. The derived age- relation is such that if the largest (400 km s-1) galaxies formed their stars 13 Gyr ago, then the mean age of low-mass (50 km s-1) objects is only 4 Gyr. The data also suggest a large spread in age at the low-mass end of the red sequence, with 68% of the galaxies having ages between 2 and 8 Gyr. We conclude that although the stars in giant red galaxies in clusters formed early, most of the galaxies at the faint end joined the red sequence only at recent epochs. This "downsizing" trend is in good qualitative agreement with observations of the red sequence at higher redshifts but is not predicted by semianalytic models of galaxy formation
A classification of smooth embeddings of 3-manifolds in 6-space
We work in the smooth category. If there are knotted embeddings S^n\to R^m,
which often happens for 2m<3n+4, then no concrete complete description of
embeddings of n-manifolds into R^m up to isotopy was known, except for disjoint
unions of spheres. Let N be a closed connected orientable 3-manifold. Our main
result is the following description of the set Emb^6(N) of embeddings N\to R^6
up to isotopy.
The Whitney invariant W : Emb^6(N) \to H_1(N;Z) is surjective. For each u \in
H_1(N;Z) the Kreck invariant \eta_u : W^{-1}u \to Z_{d(u)} is bijective, where
d(u) is the divisibility of the projection of u to the free part of H_1(N;Z).
The group Emb^6(S^3) is isomorphic to Z (Haefliger). This group acts on
Emb^6(N) by embedded connected sum. It was proved that the orbit space of this
action maps under W bijectively to H_1(N;Z) (by Vrabec and Haefliger's
smoothing theory). The new part of our classification result is determination
of the orbits of the action. E. g. for N=RP^3 the action is free, while for
N=S^1\times S^2 we construct explicitly an embedding f : N \to R^6 such that
for each knot l:S^3\to R^6 the embedding f#l is isotopic to f.
Our proof uses new approaches involving the Kreck modified surgery theory or
the Boechat-Haefliger formula for smoothing obstruction.Comment: 32 pages, a link to http://www.springerlink.com added, to appear in
Math. Zei
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
EXPLORING THE ROLE OF OSPREYS IN EDUCATION
Recent research in childhood education has demonstrated that experiences in nature are important in shaping early environmental consciousness (Hinds and Sparks 2008, Hussar and Horvath 2011, Cheng and Monroe 2012) and ultimately the expression of pro-environmental attitudes and behaviors during adulthood (Wells and Lekies 2006, Chawla and Cushing 2007, Collado et al. 2013). Increasingly, those experiences happen via written and electronic media (e.g., textbooks, computer screens) or in very anthropogenic environments (e.g., in parks and zoos) and less through direct contact with nature, a concept Louv (2005) referred to as ‘‘nature deficit disorder.’’ Even in schools where environmental education is prioritized, the extent of access to outdoor classroom activities or experiential learning opportunities can limit the degree to which children can observe, explore, and directly experience the natural world (Hudson 2001, Louv 2005, Ernst 2009). Interestingly, the same information technologies that might serve to limit contact with nature also have the potential to enhance and encourage interest and concern for the natural world (Blewitt 2011, Pearson et al. 2011). We believe this is an important paradox that warrants much further exploration and evaluation within educational and scientific communities
The influence of individual cognitive style on performance in management education
This paper reports the outcomes of an empirical study undertaken to explore the possibility that cognitive style may be an important factor influencing performance on certain types of task in management education. Four hundred and twelve final-year undergraduate degree students studying management and business administration were tested using the Allinson-Hayes Cognitive Style Index. Their cognitive styles were then compared with assessment grades achieved for academic modules, the task categories of which were deemed to be consonant with either the wholist/intuitive or the analytic style of working. Overall ability defined by final degree grades was also tested against individuals’ cognitive styles. As expected, students whose dominant cognitive styles were analytic attained higher grades for long term solitary tasks involving careful planning and analysis of information. However, contrary to expectations, performance on tasks believed to be more suited to the wholist/intuitive style was also higher for analytic individuals, as was overall ability defined by final degree grades. The results were discussed in terms of the nature of the tasks and the need for methods of performance assessment that are independent of an orientation bias. Without this, it is argued, employment selection criteria may favour the wrong type of candidate in some circumstances
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
Excavator Wheel Drive Reconstruction.
Import 05/08/2014V této práci je popsán pomocný pohon kolesa rypadla a možnost jeho rozběhu softstartérem a frekvenčním měničem. V první části je probrán asynchronní motor s kotvou nakrátko, jeho popis a princip funkce. Další části se věnují softstartéru a frekvenčnímu měniči, jejich popisu, funkcím a možnostem řízení. Dále je zde provedeno měření jejich vlivu na síť. Poslední část je věnována návrhu rekonstrukce pohonu pro napájení s frekvenčním měničem.This thesis describes the auxiliary drive wheel excavators and the possibility of starting the softstarter and frequency converter. In the first part of the document the asynchronous motor with squirrel cage is discussed, its description and function. Other parts of the document are devoted to the soft starter and frequency converter, their description, function and management options. Furthermore, there is performed measurement of their effect on the network. The last section is devoted to the design of the reconstruction drive with the frequency converter.410 - Katedra elektroenergetikyvýborn
Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey
We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields . When combined with BAO+CMB(Planck)+H 0, the analysis yields and including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find , which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results
- …