222 research outputs found
Assessing cellular response to functionalized α-helical peptide hydrogels
α-Helical peptide hydrogels are decorated with a cell-binding peptide motif (RGDS), which is shown to promote adhesion, proliferation, and differentiation of PC12 cells. Gel structure and integrity are maintained after functionalization. This opens possibilities for the bottom-up design and engineering of complex functional scaffolds for 2D and 3D cell cultures.</p
Unfixing the Studio
The studio remains a central idea in art and design education as a persistent physical and conceptual entity also notable for a lack of objective definition. The studio is complex, changeable, and tacit, meaning traditional modes of definition or inquiry are not always suited to furthering our understanding and recent work is starting to demonstrate the benefits of blending disciplinary-oriented and academic methods to achieve this. The paper aims to build on this and observes that there are inherently visual components to
many research methodologies, all of which start with an academic justification before proceeding to some visual and spatial activity. Underlying such processes is a thought process of ‘fixing and unfixing’ that can be uniquely supported by disciplinary methods. The question explored is whether starting with visual and spatial methods can lead to, or inform, academic perspectives in design education and to what extent might one inform the other. In response, the authors engaged in a series of academic, pedagogic and practice activities and dialogues that explored this question and a condensed account of the process is offered. The paper ends with descriptions of three processes, each presented as a visual and thinking method that allows
readers to explore ways of knowing of studio for themselves
Optometric Care of the Patient with Diabetes
The Canadian Association of Optometrists (CAO) is the national voice of optometry and is dedicated to collaboratively advancing the highest standard of primary eye care through the promotion of optimal vision and eye health, in partnership with all Canadians.
Optometrists are the front line of eye health and vision care. They are experts in primary eye care and are well-positioned to help combat the vision related complications of diabetes.
CAO assembled the Diabetes Guidelines Working Group to create national guidelines on the clinical management of diabetes mellitus in an effort to further educate Canadian optometrists and assist them in the management of this chronic disease. The Working Group consists of optometrists from private practice, research and academia, chosen on the basis of their expertise, experience and representation from across Canada
Lateglacial and Early Holocene palaeoenvironmental change and human activity at Killerby Quarry, North Yorkshire, UK
The hunter-gatherers that entered the British peninsula after ice-retreat were exploiting a dynamic, rapidly changing environment. Records of vegetation change and human occupation during the Lateglacial to Early Holocene in northern Britain are more commonly found at upland and cave sites. However, recent research highlights many areas of the Swale–Ure Washlands that preserve extensive environmental sequences in low-lying ice-wastage basins, channels and depressions. The Lateglacial–Early Holocene environment of Killerby Quarry, North Yorkshire, is investigated here using a multi-proxy approach of sedimentary ancient DNA (sedaDNA), pollen, sedimentological (geochemistry and portable optically stimulated luminescence), and rare and well-preserved archaeology (Lavvu structures and lithics). Results show that the wetland basins and kettleholes were small lakes or ponds in the Lateglacial surrounded by sedge-fen and birch woodland. A gradual (centennial scale) succession to reed-swamp and then marsh is seen by the Early Holocene. This environment formed the resource-scape for hunter-gatherer transitory settlement in both the Lateglacial (Late Upper Palaeolithic) and Holocene (Early Mesolithic), attracted by the rich communities of pond-related flora and fauna as well as easy strategic landscape access by way of the River Swale, an arterial route through the landscape connecting the North Sea Basin with the Pennine uplands via the palaeolakes around Killerby
Physiological effects of major genes affecting ovulation rate in sheep
Genetic mutations with major effects on ovulation rate in sheep were recently identified in two genes of the transforming growth factor (TGFβ) superfamily and a TGFβ receptor, namely bone morphogenetic protein 15 (BMP15), otherwise known as the growth differentiation factor 9b (GDF9b), GDF9 and activin-like kinase 6 (ALK6) otherwise known as the BMP receptor type IB (BMPRIB). Animals homozygous for the BMP15 or GDF9 mutations are anovulatory whereas animals heterozygous for BMP15 or GDF9 or heterozygous or homozygous for ALK6 have higher than normal ovulation rates. Immunisation of ewes against BMP15 or GDF9 shows that both are essential for normal follicular development and control of ovulation rate. Common features of fertile animals with the BMP15, ALK6 (and possibly GDF9) mutations are changes in oocyte development during early preantral follicular growth, earlier maturation of granulosa cells and ovulation of mature follicles at smaller diameters. In summary, these findings have led to a new paradigm in reproductive biology, namely that the oocyte plays a key role in regulating the ovulation rate
Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration
The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earths surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements
Carbohydrate-Aromatic Interactions in Proteins
Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites
The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs
The Coma cluster was the target of a HST-ACS Treasury program designed for
deep imaging in the F475W and F814W passbands. Although our survey was
interrupted by the ACS instrument failure in 2007, the partially completed
survey still covers ~50% of the core high-density region in Coma. Observations
were performed for 25 fields that extend over a wide range of cluster-centric
radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of
the fields are located near the core region of Coma (19/25 pointings) with six
additional fields in the south-west region of the cluster. In this paper we
present reprocessed images and SExtractor source catalogs for our survey
fields, including a detailed description of the methodology used for object
detection and photometry, the subtraction of bright galaxies to measure faint
underlying objects, and the use of simulations to assess the photometric
accuracy and completeness of our catalogs. We also use simulations to perform
aperture corrections for the SExtractor Kron magnitudes based only on the
measured source flux and half-light radius. We have performed photometry for
~73,000 unique objects; one-half of our detections are brighter than the
10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight
majority of objects (60%) are unresolved or only marginally resolved by ACS. We
estimate that Coma members are 5-10% of all source detections, which consist of
a large population of unresolved objects (primarily GCs but also UCDs) and a
wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The
red sequence of Coma member galaxies has a constant slope and dispersion across
9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma
Treasury program was made available to the public in 2008 August. The images
and catalogs described in this study relate to our second data release.Comment: Accepted for publication in ApJS. A high-resolution version is
available at http://archdev.stsci.edu/pub/hlsp/coma/release2/PaperII.pd
The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs
The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release
- …