37 research outputs found

    A prognostic CpG score derived from epigenome-wide profiling of tumor tissue was independently associated with colorectal cancer survival

    Get PDF
    Background: Results of previous studies on the association of the CpG island methylator phenotype (CIMP) with colorectal cancer (CRC) prognosis were inconsistent and mostly based on different CIMP definitions. The current study aimed to comprehensively investigate the associations between DNA methylation on genes previously used to define CIMP status with CRC survival. Results: Patients with CRC followed up for a median of 5.2 years were divided into a study cohort (n = 568) and a validation cohort (n = 308). DNA methylation was measured in tumor tissue using the Illumina Infinium HumanMethylation450 BeadChip and restricted to 43 genes used to define CIMP status in previous studies. Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) of survival after CRC, including adjustment for tumor stage, microsatellite instability, and BRAF mutation status. In the study cohort, ten CpG sites were identified to be associated with CRC survival. Seven of these ten CpG sites were also associated with CRC survival in the validation cohort and were used to construct a prognostic score. CRC patients with a prognostic score of the lowest methylation level showed poorer disease-specific survival compared with patients with the highest methylation level in both the study cohort and the validation cohort (HR = 3.11 and 95% CI = 1.97–4.91, and HR = 3.06 and 95% CI = 1.71–5.45, respectively). Conclusions: A CpG panel consisting of seven CpG sites was found to be strongly associated with CRC survival, independent from important clinical factors and mutations associated with CIMP. Further studies are required to confirm these findings

    Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases

    Get PDF
    Background: Histone 3.3 (H3.3) hotspot mutations in bone tumors occur in the vast majority of giant cell tumors of bone (GCTBs; 96%), chondroblastomas (95%) and in a few cases of osteosarcomas. However, clinical presentation, histopathological features, and additional molecular characteristics of H3.3 mutant osteosarcomas are largely unknown. Methods: In this multicentre, retrospective study, a total of 106 conventional high-grade osteosarcomas, across all age groups were re-examined for hotspot mutations in the H3.3 coding genes H3F3A and H3F3B. H3.3 mutant osteosarcomas were re-evaluated in a multidisciplinary manner and analyzed for genome-wide DNA-methylation patterns and DNA copy number aberrations alongside H3.3 wild-type osteosarcomas and H3F3A G34W/L mutant GCTBs. Results: Six osteosarcomas (6/106) carried H3F3A hotspot mutations. No mutations were found in H3F3B. All patients with H3F3A mutant osteosarcoma were older than 30 years with a median age of 65 years. Copy number aberrations that are commonly encountered in high-grade osteosarcomas also occurred in H3F3A mutant osteosarcomas. Unlike a single osteosarcoma with a H3F3A K27M mutation, the DNA methylation profiles of H3F3A G34W/R mutant osteosarcomas were clearly different from H3.3 wild-type osteosarcomas, but more closely related to GCTBs. The most differentially methylated promoters between H3F3A G34W/R mutant and H3.3 wild-type osteosarcomas were in KLLN/PTEN (p < 0.00005) and HIST1H2BB (p < 0.0005). Conclusions: H3.3 mutations in osteosarcomas may occur in H3F3A at mutational hotspots. They are overall rare, but become more frequent in osteosarcoma patients older than 30 years. Osteosarcomas carrying H3F3A G34W/R mutations are associated with epigenetic dysregulation of KLLN/PTEN and HIST1H2BB

    Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype

    Get PDF
    Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a precise delineation, although challenging in some instances, is relevant. Methods: We examined the value of DNA-methylation profiling and copy number analysis for separating these tumors. DNA-methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were compared with DNA-methylation data generated from 196 tumors encompassing potential histologic mimics like cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originating from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondrosarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12). Results: DNA-methylation profiling did not separate AFX from PDS. The DNA-methylation profiles of the other cases, however, were distinct from AFX/PDS. They reliably assigned to subtype-specific DNA-methylation clusters, although overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar frequency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), whereas amplifications were non-recurrent and overall rare (5/32). Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could demonstrate the diagnostic value of DNA-methylation profiling to delineating AFX/PDS from potential mimics. However, the assessment of certain histologic features remains crucial for separating PDS from AFX

    Разработка автоматизированной системы измерений количества топливного газа

    Get PDF
    Цель работы – разработка автоматизированной системы управления системы измерения количества и качества топливного газа с использованием ПЛК и выбор SCADA-системы. В этой работе была разработана система контроля и управления технологическим процессом СИКТГ на базе промышленных контроллеров Delta V MD Plus, с использованием SCADA-системы DeltaV. В процессе исследования проводились: Изучение технологического процесса в целом и его отдельных участков; Подбор датчиков и исполнительных механизмов; Изучение необходимой технической документации; Разработка и анализ схем для осуществления поставленной задачи.The purpose of the work is the development of an automated control system for measuring the quantity and quality of fuel gas using a PLC and selecting a SCADA system. In this work, a system for monitoring and controlling the technological process of SICT was developed on the basis of industrial controllers Delta V MD Plus, using the DeltaV SCADA system. In the process of research were conducted: Study of the technological process as a whole and its individual sections; Selection of sensors and actuators; Study of the necessary technical documentation; Development and analysis of schemes for the implementation of the task

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    Epigenome-wide search for association of serum 25-hydroxyvitamin D concentration with leukocyte DNA methylation in a large cohort of older men

    No full text
    Aim: We aimed for an epigenome-wide identification of vitamin D-associated CpG sites in leukocyte DNA. Materials & methods: Infinium HumanMethylation450BeadChip measurements in 402 Caucasian older men were evaluated for significant association with 25-hydroxy-vitamin (25(OH)D) using Spearman's correlation and median regression to adjust for confounding variables. A cross-validation approach as well as a bootstrapping procedure were implemented to determine the replicability of significant associations. Multiple testing was corrected for by Benjamini–Hochberg or Bonferroni. Results: Although in the screening subcohorts significant associations of DNAm with 25(OH)D were observed in the validation cohorts these associations were not replicated after adjustment for potential confounders. At none of the 361,945 CpGs a significant association of DNAm with 25(OH)D was found in all 100 random bootstrap samples, but in comparison at 462 CpGs for the well-established association with age. Conclusion: Leukocyte DNAm was not associated with 25(OH)D levels after validation and consideration of confounders

    Translocation breakpoint maps 5 kb 3 ′ from TWIST in a patient affected with Saethre–Chotzen syndrome

    No full text
    Saethre–Chotzen syndrome, a common autosomal dominant craniosynostosis in humans, is characterized by brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry, and prominent ear crura. Previously, we identified a yeast artificial chromosome that encompassed the breakpoint of an apparently balanced t(6;7) (q16.2;p15.3) translocation associated with a mild form of Saethre–Chotzen syndrome. We now describe, at the DNA sequence level, the region on chromosome 7 affected by this translocation event. The rearrangement occurred ∼5 kb 3 ′ of the human TWIST locus and deleted 518 bp of chromosome 7. The TWIST gene codes for a transcription factor containing a basic helix–loop–helix (b-HLH) motif and has recently been described as a candidate gene for Saethre–Chotzen syndrome, based on the detection of mutations within the coding region. Potential exon sequences flanking the chromosome 7 translocation breakpoint did not hit known genes in database searches. The chromosome rearrangement downstream of TWIST is compatible with the notion that this is a Saethre–Chotzen syndrome gene and implies loss of function of one allele by a positional effect as a possible mechanism of mutation to evoke the syndrome
    corecore