31 research outputs found

    Synthesis of Bio-hexane and Bio-Hexene from Sorbitol Using Formic Acid as Reducing Agent

    Get PDF
    Sorbitol (C6H14O6) is a sugar alcohol that can be synthesized from cellulose and has a similar skeletal structure as hexane (C6H14) so that it can straightforwardly be converted to hexane through deoxygenation. The bio-hydrocarbon synthesis from sorbitol in this investigation consisted of two main processes, namely synthesis of 2-iodohexane and deiodization of 2-iodohexane. The synthesis of 2-iodohexane from sorbitol and hydroiodic acid (HI) was conducted in a reflux system, to which formic acid as reducing agent was added gradually during the reaction to regenerate the iodine back to HI. The HI/sorbitol ratio (2:1 and 5:1), reaction temperature (90 °C, 105 °C, and 120 °C), and reaction time (between 2 and 6 hours) were varied throughout the experiment. Deiodization of 2-iodohexane was conducted via gas phase pyrolysis at various temperatures (265 °C to 285 °C) and reaction times (30 and 45 minutes). The sorbitol was effectively converted to a mixture of 2-iodohexane, hexane and other bio-hydrocarbons, with a 2-iodohexane yield of 23.15%. In the optimal reaction condition, pyrolysis of 2-iodohexane resulted in bio-hydrocarbon with a yield of 77.52%. The resulted hydrocarbon products were mixtures consisting of alkanes and alkenes

    PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH (PROBLEM BASED LEARNING ) DALAM MATA KULIAH MANAJEMEN LIMBAH B3

    Get PDF
    Perubahan metode pembelajaran yang sebelumnya berpusat pada pengajar (teacher-centered learning) menjadi berpusat pada siswa (student-centered learning), menuntut penggunaan berbagai model pembelajaran yang inovatif. Dalam penelitian ini dipaparkan penerapan model pembelajaran berbasis masalah (problem based learning; PBL) dalam mata kuliah Manajemen Limbah Bahan Beracun dan Berbahaya (B3) di Program Studi Teknik Kimia UNPAR pada semester genap 2016/2017, dengan tujuan mengamati  perubahan gaya belajar mahasiswa sebelum dan setelah pembelajaran dengan model PBL dengan menggunakan kuesioner Grasha. Selain itu mahasiswa diminta untuk mengisi kuesioner evaluasi pelaksanaan kegiatan pembelajaran. Teramati perubahan gaya belajar mahasiswa, yaitu pada menurunnya gaya belajar avoidant, kenaikan pada gaya belajar competitive dan collaborative. Sekalipun terlihat perubahan, hasil tersebut belum signifikan secara statistik. Hasil umpan balik dari mahasiswa peserta kuliah pun cukup positif, karena mahasiswa merasa lebih aktif, belajar bekerja dalam tim, dan berkomunikasi. Hasil-hasil positif yang ditunjukkan dalam penerapan model PBL pada mata kuliah ini membuka peluang untuk menerapkan model pembelajaran serupa pada berbagai mata kuliah lain

    Kajian Kinerja Katalis Ni-Mo-S/γ-Al2O3 Proses Hidrotreating Minyak Biji Kapok (Ceiba pentandra) untuk Sintesa Biohidrokarbon

    Get PDF
    Dewasa kini, bahan bakar cair merupakan salah satu kebutuhan vital dalam kehidupan manusia, yang digunakan secara intensif baik dalam transportasi dan industri. Namun, sampai saat ini bahan bakar cair, yang terdiri dari campuran hidrokarbon, masih diproduksi hampir seluruhnya dari minyak bumi. Padahal minyak bumi merupakan sumber daya yang tak terbaharui dan cadangannya kian menipis. Oleh karena itu, upaya-upaya untuk mencari bahan bakar cair alternatif termasuk dalam produksi hidrokarbon dari sumber terbarukan seperti minyak nabati (vegetable oil) sangat penting perannya untuk ketahanan energi di masa yang akan datang.Di Indonesia, minyak nabati merupakan bahan baku bahan bakar cair terbarukan (biofuel) yang sangat menjanjikan, mengingat produktivitas tanaman penghasil minyak (seperti sawit, jarak pagar, kapok, nyamplung, dan lain-lain) dan letak Indonesia di daerah katulistiwa dengan curah hujan dan sinar matahari yang melimpah.Minyak biji kapok, merupakan salah satu dari banyak minyak non-pangan di Indonesia, sangat berpotensi untuk diolah menjadi hidrokarbon terbarukan (bio-hidrokarbon). Melalui proses hidrotreating, yaitu hidrogenasi dan dehidrodeoksigenasi, ikatan rangkap dalam asam lemak (termasuk gugus siklopropenoid) dari minyak dapat dijenuhkan dan gugus oksigen dapat dihilangkan hingga dihasilkan propana (hidrokarbon utama dalam LPG) dan campuran hidrokarbon jenuh rantai panjang yang dapat digunakan langsung sebagai biosolar maupun diolah lebih lanjut menjadi aneka bahan bakar cair seperti bensin, kerosene, maupun avtur.Penelitian ini bertujuan untuk mengkaji proses hidrotreating minyak biji kapok sehingga diperoleh campuran biohidrokarbon, dengan fokus pembuatan, pengujian kinerja, dan pengembangan formula dasar katalis hidrotreating. Penggunaan katalis sangat penting tidak hanya untuk mempercepat laju reaksi, melainkan juga untuk menurunkan temperatur maupun tekanan reaksi sehingga produksi dalam industri dapat jauh lebih ekonomis.Percobaan dalam penelitian akan diawali dengan proses persiapan dan pembuatan katalis untuk reaksi hidrodeoksigenasi serta proses sulfidasi katalis. Katalis yang disintesa adalah katalis NiMo/γ-Al2O3 dengan variasi rasio massa promotor K2CO3 dalam katalis. Tahap selanjutnya adalah proses hydrotreating minyak biji kapok menjadi hidrokarbon rantai panjang. Proses ini akan dilangsungkan dalam reaktor batch pada tekanan 6 MPa dan variasi temperatur (300oC dan 360oC) dengan variasi waktu operasi (3 dan 6 jam) untuk mengetahui performa katalis untuk hydrotreating minyak biji kapok. Beberapa analisa terhadap produk pengolahan yang dilakukan adalah analisa FTIR, Gas Chromatography, uji besson, titrasi dengan reagen Durbetaki, pengukuran densitas, penentuan bilangan iodium, titrasi, perhitungan konversi (berdasarkan bilangan sabun) dan analisa EDS.Hasil percobaan menunjukkan bahwa katalis yang memberikan konversi tertinggi, kadar gugus siklopropenoid terendah, bilangan iodium terendah, dan bilangan sabun terendah adalah katalis NiMo/γ-Al2O3 dengan kandungan promotor K sebesar 2,32%. Proses hydrotreating diawali dengan hidrogenasi untuk penjenuhan ikatan-ikatan rangkap selama 2 jam, dilanjutkan dengan dehidrodeoksigenasi pada temperature 360oC selama 6 jam. Katalis ini juga menunjukan performa terbaik dalam mengeleminasi gugus siklopropenoid yang diamati melalui analisa FTIR, uji besson, dan titrasi dengan reagen Durbetaki. Selain itu, berdasarkan hasil analisa EDS, katalis ini juga memiliki kadar deposit karbon terkecil dibandingkan katalis percobaan lain

    KAJIAN HIDRODEOKSIGENASI MINYAK BIJI KAPOK (CEIBA PENTANDRA) DENGAN KATALIS Ni-Mo/γ-Al2O3 UNTUK SINTESA BIOHIDROKARBON

    Get PDF
    Energi merupakan salah satu kebutuhan vital bagi masyarakat terutama di sektor transportasi, yaitu bahan bakar minyak. Dalam proses produksi bahan bakar minyak, masih digunakan minyak bumi sebagai bahan baku, tetapi minyak bumi merupakan bahan bakar yang tak terbaharui, serta jumlahnya dalam lapisan kulit bumi pun terbatas sehingga menyebabkan harga bahan bakar minyak semakin melonjak. Meninjau dari permasalahan ini, banyak dilakukan penelitian untuk memproduksi hidrokarbon dari bahan substitusi yang dapat diolah lebih lanjut menjadi bahan bakar hayati (biofuel).Minyak biji kapok merupakan salah satu jenis minyak nabati yang berpotensi sebagai bahan substitusi produksi hidrokarbon yang terbaharukan di Indonesia. Minyak non pangan ini mengandung asam lemak jenuh, asam lemak tidak jenuh, dan asam lemak bergugus siklopropenoid yang dapat diolah menjadi biohidrokarbon. Ikatan rangkap dalam asam lemak minyak biji kapok ini dijenuhkan dan kandungan oksigen di dalamnya dihilangkan hingga membentuk hidrokarbon jenuh rantai panjang dengan produks samping berupa air, propana, CO, dan CO2 melalui proses hydrotreating dengan reaksi hidrogenasi dan hidrodeoksigenasi, dengan reaksi samping dekarboksilasi secara simultan.Percobaan dalam penelitian akan diawali dengan proses persiapan dan pembuatan katalis untuk reaksi hidrodeoksigenasi serta proses sulfidasi katalis. Katalis yang disintesa adalah katalis NiMo/γ-Al2O3 dengan variasi massa H3PO4 dan K2CO3, serta rasio Ni/Mo dalam katalis percobaan. Tahap selanjutnya adalah proses hidrodeoksigenasi minyak biji kapok menjadi hidrokarbon rantai panjang. Proses hidrodeoksigenasi ini akan dilangsungkan dalam reaktor batch pada tekanan 6 MPa dan temperatur 360oC dengan waktu operasi 6 jam untuk mengetahui performa katalis untuk hydrotreating minyak biji kapok. Beberapa analisa terhadap produk pengolahan yang dilakukan adalah analisa FTIR, GC, XPS, uji besson, titrasi dengan reagen Durbetaki, pengukuran densitas, penentuan bilangan iodium, dan perhitungan konversi. 

    The Simultaneous Removal of Cyanide and Cadmium Ions from Electroplating Wastewater using UV/TiO2 Photocatalysis

    Get PDF
    The simultaneous oxidation of cyanide and reduction of cadmium from electroplating wastewater using UV/TiO2 photocatalysis was investigated in this study. The investigation was performed using a batch-wise 3 L bubble-column photoreactor equipped with a 64-Watt low-pressure ultraviolet (UV) amalgam lamp (20 W at 254 nm). Preliminary experiments were conducted to identify the optimum aeration rate for ensuring the mixing of the catalyst and the wastewater. More specifically, this study focused on the two main factors that influence the effectiveness of oxidative and reductive processes, namely the TiO2 concentration (0.5–2 g/L) and the solution’s pH (11–13), at cyanide and cadmium ion concentrations of 50 and 100 ppm, respectively. A sample was taken every 30 minutes for 3 hours, and the cyanide and cadmium ion concentrations were determined using an ion-selective electrode and atomic absorption spectroscopy (AAS), respectively. It was determined that 3 L/min aeration was optimum, resulting in the removal of approximately 80% of the pollutants. A further increase in the aeration rate resulted in a decrease in the %removal rate due to competition between the oxygen and cadmium ions in terms of reacting with the electrons produced by the photocatalyst. An increase in the pH resulted in an increase in both the removal rate and the kinetics due to the high availability of the hydroxide ions needed to form the radical hydroxide that effectively oxidized the cyanide ions. It was observed that an increase in the TiO2 concentration increased both the removal rate and the kinetics until the optimum point, after which the performance of the photocatalyst decreased due to the shielding effect of the UV resulting from the excessive level of TiO2 present in the mixture. Within the experimental range, the best (most effective) condition was chosen based on the pseudo first-order rate constants. The best condition for cyanide oxidation was identified at pH 13 and 1 g/L TiO2 with kCN- 0.033 min-1, while the reduction of cadmium was found to be optimum at pH 13 and 2 g/L TiO2 with kCd2+ 0.039 min-1

    Sintesis Senyawa Bioaromat Melalui Proses Siklisasi Katalitik Gugus Asam Lemak α-eleostearat Dalam Minyak Kemiri Sunan

    Get PDF
    Kemiri sunan oil (Reutalis trisperma) is a non-edible vegetable oils which thrives in Indonesia, has α-eleostearic acid that can be processed into aromatic compound through isomerization-cyclizationdisproportionation.The purpose of this research was knowing kemiri sunan oil’s potency for synthesizingaromatic compound and the effects of the reaction’s condition and solvent : feed ratio to the yield of cycliccompound. This research was initiated by testing kemiri sunan oil quality by several tests: acid number,iodine number, and saponification number. Saponification was done using KOH at 60°C ; 3 hours. Then,Mg(NO3)2 was added as substituent for K in base soap and Cr(NO3)3 as a catalyst. Obtained Mg soap wasthen cleaned using aquadest before dried in the oven until its mass was constant at 60°C, then diluted inDiethanolamine. The reaction was held for 2 hours with the variations of temperature and ratio of solvent :feed (w/w). The product was then extracted using toluene in order to gain all of the aromatic compound.Then, the separation of the solvent from the product was done using simple distillation. Cyclic productpresence in the form of ortho-disubstituted benzene was tested qualitatively using FTIR, while thequantitative tests were conducted by Wijs test and aromatic product’s mass calculation

    Pengolahan Limbah Cair Warna Tekstil yang Bersifat Non-biodegradable dalam Multi-lamp Bubble Column Photoreactor

    Get PDF
    Textile dyeing industries, especially in West Java region, are usually located in a dense populated area. The waste water effluents, if not properly treated, will cause serious pollution problems to the surrounding water streams. The waste water mostly contains synthetic dyes, such as Procion Navy H-exl (PNH), Procion Crimson H-exl (PCH), Dianic Yellow Ace (DYA), which are non-biodegradable. Such waste water is characterized by a very low BOD5/COD ratio (< 0,01). One of destructive techniques to treat nonbiodegradable waste water is Advanced Oxidation Processes (AOP), which utilize the combination of UV irradiation with TiO2 photocatalyst and/or an oxidator (H2O2 or O3). This initial study investigated the use of UV/H2O2 technique for treating non-biodegradable textile dye waste water in a pilot scale (50 L) multilamp bubble column photoreactor. The final aim of the treatment was to increase the waste water BOD5/COD ratio until the biodegradability limit was reached (> 0,1), so that a cheaper conventional biological treatment might be subsequently applied. Two major operating conditions under investigation, the initial H2O2 concentration and pH were varied between 0.5 – 2 % w/w, and 3 – 10, respectively. The effect of both variables to the color content of the treated waste water was examined. This study used a synthetic waste water containing DYA, with similar color content with real waste water from a textile dyeing factory in Majalaya, Bandung (PT Himalaya). Within the experimental condition range, 55 – 96% color content were succesfully removed within 6 hours illumination period using 3 low pressure Hg UV lamps (75 Watt each). The aeration flow rate in the photoreactor was 4 L/min, and the best result was achieved at initial H2O2 concentration of 0.5 % w/w and pH 3. Additional test with real industrial waste water using those best conditions resulted in BOD5/COD ratio increase from 0.009 to 0.1 within 12.5 hours. Keywords : non-biodegradable, dyes, UV/H2O2, bubble-column, photoreacto

    Kajian Awal Sintesis Senyawa Bio-hidrokarbon Dari Sorbitol Dengan Menggunakan Asam Format Sebagai Reduktor

    Get PDF
    Sorbitol (C6H14O6) is a sugar alcohol which can be synthesized from cellulose, have similar structure with hexane (C6H14). By eliminate the oxygen content in sorbitol, bio-hexane and heavier hydrocarbons can be obtained. The objective of this research is to observe the effect of temperature and reaction time to the yield of bio-hydrocarbons and to study the regeneration of iodine (I2) to hydro-iodic acid (HI) process using formic acid (HCOOH) as a reducing agent. The bio-hydrocarbon synthesis process from sorbitol consisted of two main processes, namely synthesis of 2-iodohexane and de-iodization of 2-iodohexane. The synthesis of 2-iodohexane process was conducted with reflux system, at varied temperature (90oC and 120oC) for 2 and 6 hours with HI: Sorbitol mole ratio 2:1. Formic acid as reducing agent was gradually added during the 2-iodohexane synthesis process to regenerate the iodine to hydro-iodic acid. De-iodization of 2-iodohexane process was conducted with gas phases pyrolysis at varied temperature (260oC and 270oC) for 30 and 45 minutes. The product of 2-iodohexane synthesis process was analyzed using HPLC while the product of de-iodization of 2-iodohexane process was analyzed qualitatively by FTIR and quantitatively by gravimetric analysis method

    Sintesis Senyawa Bioaromat Melalui Proses Siklisasi Katalitik Gugus Asam Lemak α-eleostearat Dalam Minyak Kemiri Sunan

    Get PDF
    Kemiri sunan oil (Reutalis trisperma) is a non-edible vegetable oils which thrives in Indonesia, has α-eleostearic acid that can be processed into aromatic compound through isomerization-cyclizationdisproportionation.The purpose of this research was knowing kemiri sunan oil’s potency for synthesizingaromatic compound and the effects of the reaction’s condition and solvent : feed ratio to the yield of cycliccompound. This research was initiated by testing kemiri sunan oil quality by several tests: acid number,iodine number, and saponification number. Saponification was done using KOH at 60°C ; 3 hours. Then,Mg(NO3)2 was added as substituent for K in base soap and Cr(NO3)3 as a catalyst. Obtained Mg soap wasthen cleaned using aquadest before dried in the oven until its mass was constant at 60°C, then diluted inDiethanolamine. The reaction was held for 2 hours with the variations of temperature and ratio of solvent :feed (w/w). The product was then extracted using toluene in order to gain all of the aromatic compound.Then, the separation of the solvent from the product was done using simple distillation. Cyclic productpresence in the form of ortho-disubstituted benzene was tested qualitatively using FTIR, while thequantitative tests were conducted by Wijs test and aromatic product’s mass calculation
    corecore