12 research outputs found

    A Bilateral View

    Get PDF

    Auction Sale

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    The Short-Term Assessment of Risk and Treatability (START): A prospective sudy of inpatient behavior

    No full text
    Structured professional judgment guides (SPJs) have gained acceptance for the prediction of future violence. We conducted a prospective study of 44 psychiatric inpatients with a variety of mental health problems to test whether the Short-Term Assessment of Risk and Treatability (START; Webster, Martin, Brink, Nicholls, & Middleton, 2004) was able to predict a range of problem behaviors. We obtained outcome behaviors from the nursing record for a period of up to 6 months after the assessment. For all types of behavior tested (violence to others, self-harm, self-neglect, and being victimized), the clinical judgment of risk based on the START was a good predictor. However, the actuarial scores on the Strength and Risk scales of the START were only useful for the prediction of violence. The results provide a strong evidence base for the use of START to predict a range of problem behaviors, and confirms that the START should be used as an adjunct to clinical decision making and not with a blind adherence to the actuarial scores. The difference in efficacy between START used in an actuarial manner and as a SPJ suggests that schemes using other items may prove more effective in guiding the clinician to assess and managing these risks

    Structure and Metal Loading of a Soluble Periplasm Cuproprotein*

    No full text
    A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm
    corecore