20 research outputs found

    A mode-of-action ontology model for safety evaluation of chemicals: outcome of a series of workshops on repeated dose toxicity

    Get PDF
    Repeated dose toxicity evaluation aims at assessing the occurrence of adverse effects following chronic or repeated exposure to chemicals. Non-animal approaches have gained importance in the last decades because of ethical considerations as well as due to scientific reasons calling for more human-based strategies. A critical aspect of this challenge is linked to the capacity to cover a comprehensive set of interdependent mechanisms of action, link them to adverse effects and interpret their probability to be triggered in the light of the exposure at the (sub)cellular level. Inherent to its structured nature, an ontology addressing repeated dose toxicity could be a scientific and transparent way to achieve this goal. Additionally, repeated dose toxicity evaluation through the use of a harmonized ontology should be performed in a reproducible and consistent manner, while mimicking as accurately as possible human physiology and adaptivity. In this paper, the outcome of a series of workshops organized by Cosmetics Europe on this topic is reported. As such, this manuscript shows how experts set critical elements and ways of establishing a mode-of-action ontology model as a support to risk assessors aiming to perform animal-free safety evaluation of chemicals based on repeated dose toxicity data

    Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop

    No full text
    The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context

    Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies

    Full text link
    [EN] Quantitative multinuclear high-resolution magic angle spinning (HRMAS) was performed in order to determine the tissue pH values of and the absolute metabolite concentrations in 33 samples of human brain tumour tissue. Metabolite concentrations were quantified by 1D 1 H and 31P HRMAS using the electronic reference to in vivo concentrations (ERETIC) synthetic signal. 1 H–1 H homonuclear and 1 H–31P heteronuclear correlation experiments enabled the direct assessment of the 1 H–31P spin systems for signals that suffered from overlapping in the 1D 1 H spectra, and linked the information present in the 1D 1 H and 31P spectra. Afterwards, the main histological features were determined, and high heterogeneity in the tumour content, necrotic content and nonaffected tissue content was observed. The metabolite profiles obtained by HRMAS showed characteristics typical of tumour tissues: rather low levels of energetic molecules and increased concentrations of protective metabolites. Nevertheless, these characteristics were more strongly correlated with the total amount of living tissue than with the tumour cell contents of the samples alone, which could indicate that the sampling conditions make a significant contribution aside from the effect of tumour development in vivo. The use of methylene diphosphonic acid as a chemical shift and concentration reference for the 31P HRMAS spectra of tissues presented important drawbacks due to its interaction with the tissue. Moreover, the pH data obtained from 31P HRMAS enabled us to establish a correlation between the pH and the distance between the N(CH3)3 signals of phosphocholine and choline in 1 H spectra of the tissue in these tumour samples.The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge Martial Piotto (Bruker BioSpin, France) for providing the ERETIC synthetic signal. Furthermore, they acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.'s VI Framework Programme via the project "Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data" (FP6-2002-LSH 503094). CIBER-BBN is an initiative funded by the VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Esteve Moya, V.; Celda, B.; Martínez Bisbal, MC. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry. 403:2611-2625. https://doi.org/10.1007/s00216-012-6001-zS26112625403Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Cancer Res 58:1825–1832Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Magn Reson Med 60:1237–1242Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Juul R, Torp SH, Lundgren S, Gribbestad IS (2008) NMR Biomed 21:175–185Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) NMR Biomed 17:191–205Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer IJ (2008) Magn Reson Med 59:959–965Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC (2009) Mol Cancer 8:6Martinez-Bisbal MC, Monleon D, Assemat O, Piotto M, Piquer J, Llacer JL, Celda B (2009) NMR Biomed 22:199–206Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B (2006) NMR Biomed 19:90–100Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) Radiology 174:401–409Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD Jr, Bluml S (2005) Magn Reson Med 53:22–29Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) NMR Biomed 23:968–976Podo F (1999) NMR Biomed 12:413–439Griffiths JR, Cady E, Edwards RH, McCready VR, Wilkie DR, Wiltshaw E (1983) Lancet 1:1435–1436Robitaille PL, Robitaille PA, Gordon Brown G, Brown GG (1991) J Magn Reson 92:73–84, 1969Griffiths JR (1991) Br J Cancer 64:425–427Payne GS, Troy H, Vaidya SJ, Griffiths JR, Leach MO, Chung YL (2006) NMR Biomed 19:593–598De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, deSouza NM (2009) NMR Biomed 22:191–198Wang Y, Cloarec O, Tang H, Lindon JC, Holmes E, Kochhar S, Nicholson JK (2008) Anal Chem 80:1058–1066Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) NMR Biomed 14:307–317Srivastava NK, Pradhan S, Gowda GA, Kumar R (2010) NMR Biomed 23:113–122Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Magn Reson Med 61:525–532Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) J Oncol 2011:174019Bourne R, Dzendrowskyj T, Mountford C (2003) NMR Biomed 16:96–101Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) J Biomed Biotechnol 2011:763684, Epub 2010 Sep 5Celda B, Montelione GT (1993) J Magn Reson B 101:189–193Esteve V, Celda B (2008) Magn Reson Mater Phys MAGMA 21:484–484Collins TJ (2007) Biotechniques 43:25–30Govindaraju V, Young K, Maudsley AA (2000) NMR Biomed 13:129–153Fan TW-M (1996) Prog Nucl Magn Reson Spectrosc 28:161–219Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) Nucleic Acids Res 36:D402–D408Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) J Lipid Res 34:1009–1019Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR Biomed 21:272–288Daykin CA, Corcoran O, Hansen SH, Bjornsdottir I, Cornett C, Connor SC, Lindon JC, Nicholson JK (2001) Anal Chem 73:1084–1090Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Cancer Res 63:3195–3201Petroff OAC, Prichard JW (1995) In: Kraicer J, Dixon SJ (eds) Methods in neurosciences. Academic, San DiegoBarton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Anthony Bell B, Griffiths J (1999) Magn Reson Mater Phys Biol Med 8:121–128Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) NMR Biomed 15:327–337Coen M, Hong YS, Cloarec O, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK (2007) Anal Chem 79:8956–8966Russell D, Rubinstein LJ (1998) Russel and Rubinstein's pathology of tumors of the nervous system. Arnold, LondonTynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112Kjaergaard M, Brander S, Poulsen F (2011) J Biomol NMR 49:139–149Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) Anal Bioanal Chem 399:987–999Chadzynski GL, Bender B, Groeger A, Erb M, Klose U (2011) J Magn Reson 212:55–63Weljie AM, Jirik FR (2011) Int J Biochem Cell Biol 43:981–989Barba I, Cabanas ME, Arus C (1999) Cancer Res 59:1861–1868Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) NMR Biomed 22:272–279Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) NMR Biomed 21:677–685Schmitz JE, Kettunen MI, Hu D, Brindle KM (2005) Magn Reson Med 54:43–50Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM (2010) Chem Rev 110:3043–3059Hertz L (2008) Neuropharmacology 55:289–309Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Br J Pharmacol 161:1806–181

    Finding synergies for the 3Rs – Repeated dose toxicity testing: Report from an EPAA partners' forum

    Get PDF
    The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a Partners' Forum on repeated dose toxicity (RDT) testing to identify synergies between industrial sectors and stakeholders along with opportunities to progress these in existing research frameworks. Although RTD testing is not performed across all industrial sectors, the OECD accepted tests can provide a rich source of information and play a pivotal role for safety decisions relating to the use of chemicals. Currently there are no validated alternatives to repeated dose testing and a direct one-to-one replacement is not appropriate. However, there are many projects and initiatives at the international level which aim to implement various aspects of replacement, reduction and refinement (the 3Rs) in RDT testing. Improved definition of use, through better problem formulation, aligned to harmonisation of regulations is a key area, as is the more rapid implementation of alternatives into the legislative framework. Existing test designs can be optimised to reduce animal use and increase information content. Greater use of exposure-led decisions and improvements in dose selection will be beneficial. In addition, EPAA facilitates sharing of case studies demonstrating the use of Next Generation Risk Assessment applying various New Approach Methodologies to assess RDT

    Internationalizationof Read-Across as a Validated New Approach Method (NAM) for Regulatory Toxicology

    Get PDF
    Read-across (RAx) translates available information from well-characterized chemicals tothe substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g. EU-REACH) already allow this procedure to be used to waive new in vivotests. The decision to prepare a review on the state of the art of RAx as a tool for risk assessment for regulatory purposes was taken during a workshop with international experts in Ranco, Italy in July 2018. Three major issues were identified that need optimisation to allowa higher regulatory acceptance rate of the RAx procedure: (i) the definition of similarity of source and target, (ii) the translation of biological/toxicological activity of source to target, in the RAx procedure, and (iii) how to deal with issues of ADMEthat may differ between source and target. The use of new approach methodologies (NAM) was discussed as one of the most important innovations to improve the acceptability of RAx. At present, NAM data may be used to confirm chemical and toxicological similarity. In the future, the use of NAM may be broadened to fully characterize the hazard and toxicokinetic properties of RAx compounds. Concerning available guidance, documents on Good Read-Across Practice (GRAP) and on best practices to perform and evaluatethe RAx process were identified. Here, in particular the RAx guidance, being worked out by the European Commission’s H2020 project EU-ToxRisk, together with many external partners with regulatory experience, is given
    corecore