19,364 research outputs found

    Compensating linkage for main rotor control

    Get PDF
    A compensating linkage for the rotor control system on rotary wing aircraft is described. The main rotor and transmission are isolated from the airframe structure by clastic suspension. The compensating linkage prevents unwanted signal inputs to the rotor control system caused by relative motion of the airframe structure and the main rotor and transmission

    Physics Potential of a 2540 Km Baseline Superbeam Experiment

    Full text link
    We study the physics potential of a neutrino superbeam experiment with a 2540 km baseline. We assume a neutrino beam similar to the NuMI beam in medium energy configuration. We consider a 100 kton totally active scintillator detector at a 7 mr off-axis location. We find that such a configuration has outstanding hierarchy discriminating capability. In conjunction with the data from the present reactor neutrino experiments, it can determine the neutrino mass hierarchy at 3 sigma level in less than 5 years, if sin^2(2*theta13) > 0.01, running in the neutrino mode alone. As a stand alone experiment, with a 5 year neutrino run and a 5 year anti-neutrino run, it can determine non-zero theta13 at 3 sigma level if sin^2(2*theta13) > 7*10^{-3} and hierarchy at 3 sigma level if sin^2(2*theta13) > 8*10^{-3}. This data can also distinguish deltaCP = pi/2 from the CP conserving values of 0 and pi, for sin^2(2*theta13) > 0.02.Comment: 16 pages, 7 figures and 1 table: Published versio

    Resolving Octant Degeneracy at LBL experiment by combining Daya Bay Reactor Setup

    Full text link
    Long baseline Experiment (LBL) have promised to be a very powerful experimental set up to study various issues related to Neutrinos. Some ongoing and planned LBL and medium baseline experiments are - T2K, MINOS, NOvA, LBNE, LBNO etc. But the long baseline experiments are crippled due to presence of some parameter degeneracies, like the Octant degeneracy. In this work, we first show the presence of Octant degeneracy in LBL experiments, and then combine it with Daya Bay Reactor experiment, at different values of CP violation phase. We show that the Octant degeneracy in LBNE can be resolved completely with this proposal.Comment: 4 pages, 8 figure

    Superconducting atomic contacts under microwave irradiation

    Get PDF
    We have measured the effect of microwave irradiation on the dc current-voltage characteristics of superconducting atomic contacts. The interaction of the external field with the ac supercurrents leads to replicas of the supercurrent peak, the well known Shapiro resonances. The observation of supplementary fractional resonances for contacts containing highly transmitting conduction channels reveals their non-sinusoidal current-phase relation. The resonances sit on a background current which is itself deeply modified, as a result of photon assisted multiple Andreev reflections. The results provide firm support for the full quantum theory of transport between two superconductors based on the concept of Andreev bound states

    Recent developments in radiative B decays

    Full text link
    We report on recent theoretical progress in radiative B decays. We focus on a calculation of logarithmically enhanced QED corrections to the branching ratio and forward-backward asymmetry in the inclusive rare decay anti-B --> X(s) l+ l-, and present the results of a detailed phenomenological analysis. We also report on the calculation of NNLO QCD corrections to the inclusive decay anti-B --> X(s) gamma. As far as exclusive modes are concerned we consider transversity amplitudes and the impact of right-handed currents in the exclusive anti-B --> K^* l+ l- decay. Finally, we state results for exclusive B --> V gamma decays, notably the time-dependent CP-asymmetry in the exclusive B --> K^* gamma decay and its potential to serve as a so-called ``null test'' of the Standard Model, and the extraction of CKM and unitarity triangle parameters from B --> (rho,omega) gamma and B --> K^* gamma decays.Comment: 5 pages, 2 figures. Accepted for publication in the proceedings of International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 Jul 200

    Multi-component symmetry-projected approach for molecular ground state correlations

    Get PDF
    The symmetry-projected Hartree--Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically-improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ\mu-oxo) forms of [Cu2_2O2_2]2+^{2+}, comparable to other state-of-the-art quantum chemical methods

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Untangling CP Violation and the Mass Hierarchy in Long Baseline Experiments

    Get PDF
    In the overlap region, for the normal and inverted hierarchies, of the neutrino-antineutrino bi-probability space for νμνe\nu_\mu \to \nu_e appearance, we derive a simple identity between the solutions in the (sin22θ13\sin^2 2\theta_{13}, sinδ\sin \delta) plane for the different hierarchies. The parameter sin22θ13\sin^2 2\theta_{13} sets the scale of the νμνe\nu_\mu \to \nu_e appearance probabilities at the atmospheric δmatm22.4×103\delta m^2_{atm} \approx 2.4 \times 10^{-3} eV2^2 whereas sinδ\sin \delta controls the amount of CP violation in the lepton sector. The identity between the solutions is that the difference in the values of sinδ\sin \delta for the two hierarchies equals twice the value of sin22θ13\sqrt{\sin^2 2\theta_{13}} divided by the {\it critical} value of sin22θ13\sqrt{\sin^2 2\theta_{13}}. We apply this identity to the two proposed long baseline experiments, T2K and NOν\nuA, and we show how it can be used to provide a simple understanding of when and why fake solutions are excluded when two or more experiments are combined. The identity demonstrates the true complimentarity of T2K and NOν\nuA.Comment: 15 pages, Latex, 4 postscript figures. Submitted to New Journal of Physics, ``Focus on Neutrino Physics'' issu
    corecore