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The symmetry-projected Hartree–Fock ansatz for the electronic structure problem can efficiently
account for static correlation in molecules, yet it is often unable to describe dynamic correlation
in a balanced manner. Here, we consider a multi-component, systematically improvable approach,
that accounts for all ground state correlations. Our approach is based on linear combinations of
symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized
determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian
even though it is written as a superposition of deformed (broken-symmetry) determinants. We
show how short expansions of this kind can provide a very accurate description of the electronic
structure of simple chemical systems such as the nitrogen and the water molecules, along the entire
dissociation profile. In addition, we apply this multi-component symmetry-projected approach to
provide an accurate interconversion profile among the peroxo and bis(μ-oxo) forms of [Cu2O2]2+,
comparable to other state-of-the-art quantum chemical methods. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4832476]

I. INTRODUCTION

In recent work,1–5 we have explored the merits of the
symmetry-projected Hartree–Fock (HF) ansatz for describing
the electronic structure of molecular systems. A symmetry-
projected ansatz can account for most of the static correlations
present in molecular systems while also capturing a fraction
of the dynamic correlation. The resulting wavefunction has
a highly non-trivial multi-determinantal character, with well
defined quantum numbers, and yet it is described by a sin-
gle set of occupied orbitals. In this way, the connection to
the single-particle picture is not completely abandoned. The
projected state can be expressed as the resonance among the
different broken-symmetry, defect-possessing Slater determi-
nants, in such a way that a state with well-defined symmetries
is recovered.

A successful many-body approach to quantum chemistry
must be able to predict reaction energies and reaction barri-
ers with (near) chemical accuracy. That is, the method must
be able to predict energy differences between reactants, prod-
ucts, and transition states to within a few kcal/mol, which is a
small fraction of the total electronic energies. In order to ac-
complish this task for general chemical systems, the method
must provide a balanced description of static and dynamic
correlations for the different chemical species participating in
a given process. A symmetry-projected HF approach will gen-
erally fail these tests: the method is not size consistent and the
amount of correlations captured is, to a given extent, system
and symmetry dependent.

In this work, we explore a systematic way to approach
the exact many-body wavefunction by taking linear com-
binations of symmetry-projected configurations. Ideally, the
multi-component approaches here considered should account
for most of the correlations (both static and dynamic) in

chemical systems with just a few symmetry-projected config-
urations. If the number of such configurations depends weakly
on the size of the system, the approach remains mean-field in
computational cost.

Our multi-component approach follows the few-
determinant (FED) treatment described by Schmid6, 7 in the
nuclear physics community as well as the resonating HF
(Res HF) approach originally proposed by Fukutome.8 The
two constitute extreme strategies of a more general method
where linear combinations of symmetry-projected configu-
rations are used, regardless of the approach used to optimize
them. We note that a linear combination of restricted HF
determinants was used by Koch and Dalgaard9 to reach near
full configuration-interaction (FCI) accuracy in the electronic
energies of Be, BH, and H2O. Similarly, a Res HF approach
was used by Tomita, Ten-no, and Tanimura10 in approximate
symmetry-projected calculations on carbon monoxide. In
contrast to these previous efforts, our work is characterized
by the simultaneous exploitation of linear combinations of
non-orthogonal determinants each one symmetry-projected
and variationally optimized. This particular approach has
not been explored in previous investigations, especially in
connection with non-collinear spin projection and spatial
symmetry breaking and restoration. Both FED and Res HF
approaches based on symmetry-projected configurations
have been successfully applied to describe strongly corre-
lated systems in condensed matter physics like the one and
two-dimensional Hubbard model.11–14 In general terms, the
methods described in this paper fall within the category
of non-orthogonal configuration interaction approaches of
which there are several examples in quantum chemistry.15, 16

This work is organized as follows. In Sec. II we provide
details of our formalism. In particular, after a brief review
of the symmetry-projected HF approach, we describe the
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general multi-component approach and then briefly consider
the FED and Res HF strategies to optimize the result-
ing ansatz. In Sec. III we describe some features of our
computational implementation. In Sec. IV, we apply the
multi-component formalism to describe the correlation in the
dissociation profile of N2 and H2O. We have also considered
the challenging [Cu2O2]2 + species with our new approach.
Finally, Sec. V is devoted to concluding remarks and work
perspectives.

II. FORMALISM

In this section, we describe in detail the formalism we
use. We consider the symmetry-projected HF ansatz for the
ground state of a molecular system in Sec. II A. We describe
a CI expansion based on symmetry-projected configurations
in Sec. II B, which we actually do not use but let us nicely
put in perspective our multi-component approach. Finally, in
Sec. II C we describe the multi-component approach, focus-
ing in the FED and Res HF strategies used in its optimization.

A. Symmetry-projected Hartree–Fock

We start this section by clarifying that we understand
a symmetry-projected ansatz as a wavefunction where good
quantum numbers are restored from a broken-symmetry state
even if “true” projection operators (in the strict mathemati-
cal sense) are not used.17 The symmetry-projected HF ansatz
takes the form18

|�j,m〉 =
∑

k

fk P̂
j

mk|�〉, (1)

where |�〉 is a broken-symmetry Slater determinant, P̂
j

mk is
a “projection-like” operator (written for general non-Abelian
groups) and {f} is a set of linear variational coefficients. Here,
j labels the irreducible representation and m is used for the
row of the irrep; thus j and m constitute good quantum num-
bers. For one-dimensional irreps, a single quantum number j
is sufficient. Upon action of P̂

j

mk ≡ |j,m〉 〈j, k| on |�〉, the
component with j, k quantum numbers is extracted and writ-
ten in terms of a wavefunction with quantum numbers j, m.

The sum in Eq. (1), looping over the dimension of the
irreducible representation j, is necessary in order to remove
an unphysical dependence19 of |� j,m〉 on the orientation of
|�〉. Consider, for instance, a hydrogen-atom wavefunction.
One can recover a state |�1/2,1/2〉 from a determinant |�〉
with a spin-up electron by acting with P̂

1/2
1/2,1/2 on it. On the

other hand, the same state can only be recovered from a spin-
down electron determinant by acting with P̂

1/2
1/2,−1/2. In gen-

eral, a linear combination of the form of Eq. (1) removes the
dependence upon the orientation of |�〉.

The symmetry-projected HF ansatz has a long history in
quantum chemistry. Originally proposed by Löwdin in 1955,
it was usually associated with spin projection out of an un-
restricted reference determinant.20, 21 Only recently our re-
search group has shown1 how to efficiently carry out the
fully variational optimization of symmetry-projected HF con-
figurations, borrowing techniques commonly applied in the

nuclear physics community that we have adapted to the
molecular electronic structure problem. Our strategy allows
us to break and restore all symmetries of the molecular Hamil-
tonian, including those that are not spontaneously broken, in
a fully self-consistent variational approach.

The projection operators we use take the generic form

P̂
j

mk = 1

V

∫
V

dϑ w
j

mk(ϑ) R̂(ϑ). (2)

Here, ϑ labels the elements of the symmetry group; for
discrete groups (such as most point groups), the integration
should be understood as a summation. In addition, V is the
volume of integration, w

j

mk(ϑ) is an integration weight (or
the character for one-dimensional irreps) associated with the
symmetries of the state to be recovered, and R̂(ϑ) is a rotation
operator. We point the interested reader to Refs. 7 and 17 for
more details of the form of the projection operators. The spin
projection operator, for example, takes the form

P̂ s
mk = 2s + 1

8π2

∫
d�Ds∗

mk(�) R̂(�), (3)

where � = (α, β, γ ) stands for the set of Euler angles,
Ds

mk(�) = 〈s,m|R(�)|s, k〉 is an element of Wigner’s D-
matrix, and R̂(�) = exp(−iαŜz) exp(−iβŜy) exp(−iγ Ŝz) is
the spin-rotation operator. Similarly, a projection into any of
the irreps of the C2v group (j = A1, A2, B1, B2) can be accom-
plished with

P̂ j = 1

4

∑
{χ (E)Ê + χ (C2)Ĉ2 + χ (σxz)σ̂xz + χ (σyz)σ̂yz},

(4)
where χ (ϑ) are the characters of the selected irrep and Ê

(identity), Ĉ2 (180◦ rotation), and σ̂xz, σ̂yz (mirror planes) are
the elements of the C2v group.

Given the form (Eq. (2)) of the projection operator, the
symmetry-projected HF wavefunction can be expressed as a
superposition of states of the form R̂(ϑ)|�〉, that is, all de-
generate states (the Goldstone manifold) generated by the
set of operators commuting with the Hamiltonian.22 The co-
efficients w

j

mk(ϑ) are fully determined by the irrep to be
recovered.

The energy of the ansatz of Eq. (1) is given by

Ej [�] =
∑

kk′ f
∗
k fk′

〈
�

∣∣P̂ j†
mk Ĥ P̂

j

mk′
∣∣�〉

∑
kk′ f

∗
k fk′

〈
�

∣∣P̂ j†
mk P̂

j

mk′
∣∣�〉 ,

=
∑

kk′ f
∗
k fk′

〈
�

∣∣Ĥ P̂
j

kk′
∣∣�〉

∑
kk′ f

∗
k fk′

〈
�

∣∣P̂ j

kk′
∣∣�〉 =

∑
kk′ f

∗
k fk′ Hkk′∑

kk′ f
∗
k fk′ Nkk′

. (5)

Here, we have used the properties of the “projection-like” op-
erators

P̂
j

λκ P̂
k
μν = δjkδκμP̂ k

λν, (6a)

(
P̂

j

λκ

)† = P̂
j

κλ. (6b)

Note that the energy only depends on the irrep j recovered, but
not on the quantum number m labelling the row of the irrep.

The matrix elements appearing in Eq. (5) can be
efficiently evaluated using the formulas provided in the Ap-
pendix. The corresponding derivation of the matrix elements



204102-3 Jiménez-Hoyos, Rodríguez-Guzmán, and Scuseria J. Chem. Phys. 139, 204102 (2013)

can be found in, e.g., Ref. 23. For a detailed discussion of
how the ansatz of Eq. (1) is optimized with respect to the
set of linear variational coefficients {f} and with respect
to the underlying broken symmetry determinant |�〉 we
refer the reader to Refs. 23, 24. We stress that the optimiza-
tion method that we follow is different from the one used in
Ref. 1, where a parametrization based on the density matrix of
the deformed determinant was used. We note that a stationary
point is found when the following equations are all satisfied:∑

kk′
f ∗

k fk′ Nkk′ = 1, (7)

∑
k′

(Hkk′ − E Nkk′) fk′ = 0 ∀ k, (8)

∑
kk′

f ∗
k fk′

〈
�a

i

∣∣(Ĥ − E) P
j

kk′
∣∣�〉

∑
kk′ f

∗
k fk′ Nkk′

= 0 ∀ i, a. (9)

Here, E is the energy of Eq. (5) and |�a
i 〉 is a singly

excited determinant (i → a) built from |�〉. The second
equation determines a generalized eigenvalue problem for
the coefficients {f} subject to the normalization constraint
expressed by the first equation. Only the lowest energy
eigenvector of the eigenvalue problem is considered. The last
equation constitutes the generalized Brillouin condition de-
coupling the ground-state solution from excited particle-hole
configurations.

B. Configuration interaction based
on symmetry-projected determinants

Conceptually, the simplest approach to account for miss-
ing correlations in the symmetry-projected HF ansatz is to
consider a configuration interaction approach. A configura-
tion interaction ansatz can be written as

|�j,m〉 =
∑

k

P̂
j

mk

(
f0;k|�〉 +

∑
ia,k

fia;k

∣∣�a
i

〉

+
∑

ijab,k

fia,jb;k

∣∣�ab
ij

〉 + · · ·
)

. (10)

In the above expression, we have used indices i and j to
denote occupied (hole) states in the broken-symmetry deter-
minant |�〉, whereas indices a and b are used for unoccupied
(particle) states. The state |�a

i 〉 constitutes a singly excited de-
terminant out of the reference Fermi vacuum |�〉. The linear
variational coefficients f can be determined by the solution to
a generalized eigenvalue problem among all configurations.
We note that the above representation of the Hilbert subspace
with the appropriate symmetry is overcomplete.

Including only singly excited configurations (of the
form |�a

i 〉) in the configuration-interaction expansion will
in general not lead to any improvement in the ground state
energy. In particular, the generalized Brillouin condition
that a variationally optimized symmetry-projected HF state
satisfies is given by Eq. (9), which makes singly excited
configurations orthogonal to the symmetry-projected HF
state through the Hamiltonian when using the f0; k variational

coefficients. Note that if the dimension of the irreducible
representation associated with the restored symmetry is larger
than 1, some energy improvement in the ground state may be
obtained by diagonalization in the singly excited space due to
the variational coefficients fia; k. On the other hand, diagonal-
ization in this space can be used for a first-order description
of excited states. This corresponds to the symmetry-projected
Tamm-Dancoff approximation discussed by Schmid et al.6

If, in addition, one includes doubly excited configura-
tions, an energy improvement is all but guaranteed unless
the symmetry-projected HF state was already exact. Nev-
ertheless, the matrix is large and dense; the evaluation of
each matrix element is significantly more expensive than in
the standard HF-based approach, where the Slater–Condon
rules25 can be used to simplify the evaluation.

Given that the representation of the Hamiltonian is not
sparse among symmetry-projected configurations, even if
built from orthogonal, particle-hole excited determinants, the
above CI-like approach cannot be considered efficient. Note,
for instance, that including all doubly excited configurations
yields an O(M6) eigenvalue problem if carried out straightfor-
wardly. The construction of the matrix is even more expensive
as each matrix element can only be evaluated at mean-field
(O(M4)) cost.

We have thus explored an alternative approach: we
consider expansions based on a few symmetry-projected con-
figurations resulting from a set of non-orthogonal determi-
nants. The use of non-orthogonal determinants allows us to
arrive at a much more compact representation than would be
possible using an expansion in terms of orthogonal determi-
nants while accessing even highly excited configurations. A
non-orthogonal expansion also facilitates the physical insight
behind the wavefunction: the correlation thus gained can be
attributed to the resonance among the configurations in the
expansion. If the number of configurations needed in the ex-
pansion is essentially constant with increasing system size,
the method has mean-field computational cost. We note that
this spirit is also pursued in the generalized multistructural
wavefunction of Hollauer and Nascimento,16 where a linear
combination of expansions based on non-orthogonal Slater
determinants is used as a variational ansatz.

C. Multi-component approaches

Let us suppose that we have already optimized a
symmetry-projected HF configuration. In this section, we
write this as

| 1�j,m〉 =
∑

k

f 1
k P̂

j

mk| 1�〉, (11)

where the superscript 1 in |1� j, m〉 is used to indicate that a
single symmetry-projected configuration is used in the ansatz.
Similarly, the superscript 1 in the f variational coefficients and
in |�〉 indicates that only one determinant is included in the
ansatz.

In the general case, we can describe the ground state with
n symmetry-projected configurations, as in

| n�j,m〉 =
∑

k

P̂
j

mk

n∑
l=1

f l
k | l�〉. (12)
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Note that this defines a systematically improvable
approach. That is, if n determinants prove insufficient to pro-
vide an accurate description of a given system, one can add
one (or a few) more configuration(s) to the expansion. It is
also important to note that the expansion of Eq. (12) is written
as a superposition of the Goldstone manifolds associated with
each of the n-deformed determinants in the multi-component
wavefunction. One has now to address the issue of how to
variationally optimize the n-configuration ansatz. There are
two extreme approaches that we will consider:

� In the FED approach,6, 7, 11 the different configura-
tions are optimized one-at-a-time. That is, the second
symmetry-projected configuration is optimized after
the first one, leaving the latter untouched, and so on.
We note that there is no need for the FED expansion
to be short, as its name would imply, although it is
a desirable feature. We keep the acronym to remain
consistent with the literature.

� In the resonating HF (Res HF) approach,8 all the
configurations are optimized at the same time.

There are, of course, a number of possible variants in be-
tween. For instance, one could optimize two configurations
at a time. Each approach has strengths and drawbacks. In
particular, we would like to stress the following:

� A Res HF optimized wavefunction is stationary with
respect to changes in any of the underlying determi-
nants. On the other hand, a FED optimized wavefunc-
tion is stationary only with respect to particle-hole
excitations of the last-added determinant.
This feature makes the Res HF wavefunction easier
to work with for evaluating properties that depend on
derivatives of the wavefunction.

� In a Res HF optimization, O(n2) overlap and Hamil-
tonian matrix elements need to be re-computed at ev-
ery iteration. In contrast, an efficient implementation
of the FED approach requires only O(n) overlap and
Hamiltonian matrix elements to be recomputed.

� The convergence properties of the two approaches can
be very different. In the Res HF approach, for instance,
there is no guarantee that any of the configurations will
resemble the optimized single-configuration ansatz.

The matrix elements appearing in the evaluation of the
energy and energy gradient with multi-component approaches
can be efficiently evaluated using the expressions provided
in the Appendix. In our calculations, we carry out the opti-
mization with respect to the broken-symmetry determinants
in the multi-component expansion using a robust, Thouless-
based parametrization.26, 27 We now proceed to consider each
of the two approaches in detail.

1. The few-determinant approach

In the FED approach introduced by Schmid,6, 7 only
the last-added symmetry-projected configuration is optimized
with respect to the underlying HF transformation. In the
quantum chemistry community, a similar approach was pro-
posed by Koch and Dalgaard,9 although the configurations

included were limited to a restricted HF-type ansatz. The
FED approach has been very successful in the nuclear physics
community (see Ref. 7 and references therein).

Let us consider the variational optimization of the nth de-
terminant in the ansatz defined by Eq. (12). The energy func-
tional becomes

nEj [ n�, {f }] = 〈 n�j,m|Ĥ | n�j,m〉
〈 n�j,m| n�j,m〉

=
∑

kl,k′l′ f
l∗
k f l′

k′
〈
l�

∣∣Ĥ P̂
j

kk′
∣∣ l′�

〉
∑

kl,k′l′ f
l∗
k f l′

k′
〈
l�

∣∣P̂ j

kk′
∣∣ l′�

〉 . (13)

Here, we use the symbol nEj for the energy of the state to
denote that it corresponds to an n-determinant expansion and
to emphasize that it only depends on the label j of the irre-
ducible representation but not on the row m projected.

The variation with respect to the coefficients f (note that
the full set is re-optimized) leads to the generalized eigenvalue
problem∑

k′l′

(
nHkl,k′l′ − nE nNkl,k′l′

)
f l′

k′ = 0 ∀ k, l, (14)

subject to the constraint∑
kl,k′l′

f l∗
k

nNkl,k′l′ f
l′
k′ = 1. (15)

Here, the matrices nH and nN are given by

nHkl,k′l′ = 〈
l�

∣∣Ĥ P̂
j

kk′
∣∣ l′�

〉
, (16)

nNkl,k′l′ = 〈
l�

∣∣P̂ j

kk′
∣∣ l′�

〉
. (17)

A stationary point in the optimization with respect to
| n�〉 is found when∑

k,k′l′ f
n∗
k f l′

k′
〈
n�a

i

∣∣(Ĥ − nE)P̂ j

kk′
∣∣l′�〉

∑
kl,k′l′ f

l∗
k f l′

k′
〈
l�

∣∣P̂ j

kk′
∣∣l′�〉 = 0 ∀ i, a.

(18)

Because the states are constructed using a chain of varia-
tional calculations, one can easily prove that

1E − 2E ≥ 2E −3 E ≥ · · · ≥ n−1E − nE. (19)

That is, the last added symmetry-projected configuration will
improve the ground state energy by a smaller amount than the
previously added one. Of course this is only satisfied if one
can guarantee that the global minimum was found in each op-
timization problem. In practice, as this is difficult to guaran-
tee, small deviations to this rule are observed, yet the overall
trend remains valid.

We close this section by noting that Schmid et al.6

realized that the FED approach is not the most general
description using n symmetry-projected configurations. The
authors stated, regarding the Res HF approach discussed in
Sec. II C 2, that they did not believe that “such a fine-tuning
will yield improvements with respect to the (FED) approach.”
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2. The resonating HF approach

It is perhaps conceptually simpler, though computation-
ally more challenging, to optimize all configurations at the
same time. This is the basis of the resonating Hartree–Fock
method devised by Fukutome.8 It has been used by Tomita,
Ten-no, and Tanimura10 in approximate symmetry-projected
Res HF calculations on CO (carbon monoxide), and by Ten-
no in CI and coupled-cluster approaches based on a Res HF
expansion.28 It has proven very successful in the context of
the Hubbard model,12–14, 29 which can be regarded as a one-
orbital-per-site cluster Hamiltonian.

Let us consider the variational optimization of the ansatz
defined by Eq. (12). The energy functional becomes

nEj [{�}, {f }] = 〈 n�j,m|Ĥ | n�j,m〉
〈 n�j,m| n�j,m〉

=
∑

kl,k′l′ f
l∗
k f l′

k′
〈
l�

∣∣Ĥ P̂
j

kk′
∣∣ l′�

〉
∑

kl,k′l′ f
l∗
k f l′

k′
〈
l�

∣∣P̂ j

kk′
∣∣ l′�

〉 , (20)

where we have emphasized that the full set of determinants is
optimized. Note that the form of the energy expression is the
same as in the FED approach; the difference lies in the varia-
tional flexibility. The variation with respect to the coefficients
f leads to the same generalized eigenvalue problem as in the
FED approach (though the matrix elements are necessarily
different).

A stationary point in the optimization with respect to {�}
is achieved when∑

kl,k′l′ f
l∗
k f l′

k′
〈
l�a

i

∣∣(Ĥ − nE)P̂ j

kk′
∣∣ l′�

〉
∑

kl′′,k′l′ f
l′′∗
k f l′

k′
〈
l′′�

∣∣P̂ j

kk′
∣∣l′�〉 = 0 ∀ l, i, a.

(21)

This implies that the Res HF wavefunction is stationary with
respect to particle-hole mixings of any of the determinants in
the expansion.

III. COMPUTATIONAL DETAILS

We have implemented the multi-component symmetry-
projected HF approach for molecular systems in an in-house
program. One- and two-electron integrals are extracted from
the Gaussian 0930 suite. Our program is parallelized (a
hybrid openMP/MPI approach is used) over the grid-points
used in the symmetry-projection as well as over the configu-
rations used in the multi-component expansion. Our program
is currently limited to the use of Cartesian gaussian basis sets.
We note that our FED-type implementation re-uses overlap
and Hamiltonian matrix elements and thus scales as O(n) with
the number of symmetry-projected configurations.11

The optimization of the broken-symmetry determinants
is carried out using a Thouless-based strategy, as described
in detail in Refs. 24, 27 and 31, with a limited-memory
quasi-Newton approach.32, 33

One of the most important issues regarding a practical
implementation of the FED and Res HF approaches is to
prepare an initial guess of the underlying HF determinants
in the symmetry-projected configuration expansion. This was

discussed in some detail by Koch and Dalgaard.9 Our ap-
proach is currently simplistic: we prepare an initial guess of
the HF determinants in the FED approach as random uni-
tary rotations of the orbitals closest to the Fermi energy in
the standard HF determinant or the optimized determinant in
a one-configuration symmetry-projected expansion. The uni-
tary matrix is built in the form exp (iλK), with λ ≈ 0.01 and K
being a Hermitian matrix. Our initial guess for Res HF calcu-
lations is the converged FED expansion with the same num-
ber of determinants. Given that the symmetry-projected FED
or Res HF equations will reach a stationary point depend-
ing on the initial guess provided, a smarter scheme to pre-
pare the initial guess is desirable. Nevertheless, it is difficult
to anticipate a priori the structure of general non-orthogonal
determinants that will interact the most through the Hamil-
tonian with the set of previously obtained determinants. Fi-
nally, we would like to point out that in order to obtain con-
tinuous dissociation profiles in the examples provided, we
have used the determinant obtained in a neighboring point
in the potential energy curve as an initial guess for the
solution.

Before we discuss our results, let us briefly clarify the
nomenclature we use. All symmetry projected methods are
written in the form X-Y. Here, Y = RHF (restricted), UHF
(unrestricted), or GHF (generalized) denotes the type of un-
derlying HF determinant used; complex orbitals are used in
all our multi-component calculations. In X, we write the col-
lection of symmetries restored in the calculation: S is used for
spin and the point group label (like C2v) is used to denote the
type of spatial symmetry projection.

IV. RESULTS AND DISCUSSION

A. Ground-state energy of N2

We start by considering the ground state energy of the
nitrogen molecule, both at the equilibrium geometry (req) and
at the recoupling region (1.5 req), where req = 1.09768 Å.34

We show in Fig. 1 the evolution of the energy with the number
of configurations (n) added in a FED-type expansion for a se-
ries of (symmetry-projected) methods. Calculations were per-
formed using the Cartesian cc-pVDZ basis set. We compare
our results with coupled-cluster singles and doubles (CCSD)
[full] and CCSD(T) [full] reference energies (obtained with
the Gaussian 09 suite). For spin projected methods, pro-
jection to the singlet state was carried out; for methods in-
volving spatial symmetry projection, projection was done to
the totally symmetric irreducible representation.

A few details of the RHF, UHF, and CCSD calculations
in Fig. 1 are in order. At req, RHF converges to a symme-
try adapted state, which was also used as reference for the
coupled-cluster calculations. The energies are −108.9547,
−109.2740, and −109.2863 hartree, respectively, at the RHF,
CCSD [full], and CCSD(T) [full] levels. At 1.5 req, we have
used the lowest energy broken symmetry complex RHF and
UHF states; their energies are −108.6336 and −108.7809
hartree, respectively. The corresponding UCCSD [full] and
UCCSD(T) [full] energies, which use the UHF state as a
reference, are −109.0367 and −109.0507 hartree.
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FIG. 1. Ground-state energy of the N2 molecule predicted by a variety of
FED approaches at r = req (top panel) and r = 1.5 req (bottom panel) as
a function of the number n of symmetry-projected configurations. Here, req

= 1.09768 Å;34 a Cartesian cc-pVDZ basis set is used. The straight lines in
each panel mark the CCSD [full] and CCSD(T) [full] reference energies.

We observe from the results in Fig. 1 that the rule
stating that the last added determinant (in FED-type expan-
sions) should bring less correlation than the previously added
one is satisfied in most cases. In those cases where it is not,
this is because we have failed to converge to the global min-
imum in the parameter hypersurface. Several other features
deserve further discussion:

� At equilibrium, spatial symmetry projection (with the
D2h group) brings significantly more correlation than
spin projection with the same number of symmetry-
projected configurations. This is not too obvious at
1.5 req, yet D2h-UHF remains competitive with S-GHF
while being significantly cheaper.

� The use of broken spin-symmetry determinants (UHF-
type) brings significantly more correlation than the
use of RHF determinants at 1.5 req. This remains true
even when several configurations have been added; it
takes roughly 4 RHF configurations to obtain the same
energy as a single UHF configuration.

� When both spin and spatial symmetry are restored, a
small number of configurations seem to be sufficient
to obtain energies of comparable quality to CCSD or
CCSD(T). At 1.5 req, ≈16 D2hS-UHF configurations

TABLE I. Ground-state energy of the nitrogen molecule (at r = req) pre-
dicted with the multi-component S-UHF approaches as a function of the num-
ber of configurations n. The Cartesian cc-pVDZ basis set was used.

n FED S-UHF Res HF S-UHF

1 −109.0267 −109.0267
2 −109.0749 −109.1210
3 −109.1170 −109.1530
4 −109.1360 −109.1728
5 −109.1617
6 −109.1720
7 −109.1845
8 −109.1922

bring more correlation than CCSD(T). This is remark-
able considering the ease of interpretation associated
with the multi-component wavefunction.

Unfortunately, we were unable to produce such a detailed
plot using the Res HF approach, as it becomes significantly
more difficult to converge than the corresponding FED ex-
pansion. We show, nonetheless, in Table I a comparison of
ground-state energies, evaluated at req, predicted with FED
S-UHF and Res HF S-UHF as a function of the number of
configurations n.

It is evident from the results in Table I that the Res HF
approach yields significantly lower energies than the FED
approach for a fixed number of configurations. However,
the FED approach allows one to include many more con-
figurations than in the Res HF approach as the optimiza-
tion is cheaper and typically takes much fewer iterations
with our gradient-based optimization. For instance, Fig. 1 in-
cludes results with up to 32 FED SUHF configurations. This
makes the FED approach much more convenient for practical
applications.

B. Dissociation profiles

Let us now consider the full dissociation profile of the
N2 molecule. Dissociation curves predicted with a FED D2hS-
UHF approach are shown in Fig. 2, along with the dissociation
profile computed with a single symmetry-projected configu-
ration using D2hS-GHF. The calculations use the Cartesian cc-
pVDZ basis set. We compare our curves with the FCI profile
from Ref. 35. Nevertheless, we stress that the FCI results are
not directly comparable: they were obtained with the spheri-
cal cc-pVDZ basis and freezing the 1s core orbital of the N
atoms. Both of these effects would contribute to underesti-
mate the FCI energy.36 The FCI results are included as a guide
to the eye for the correct shape of the dissociation curve.

The results in Fig. 2 show that D2hS-UHF yields a
qualitatively correct dissociation curve even with a single
symmetry-projected configuration. Inclusion of 8 symmetry-
projected configurations (using the FED approach) results in
a curve fairly parallel to the reference FCI curve. The en-
ergy improvement due to the additional configurations is seen
across the potential energy surface. Interestingly, 2 symmetry-
projected configurations with the D2hS-UHF method match
the results from D2hS-GHF with a single configuration.
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FIG. 2. Dissociation profile for the ground state of the N2 molecule obtained
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Finally, let us stress that the wavefunction resulting from a
multi-component approach can be regarded as a discretized
form of the unitary group coherent state representation of the
exact many-fermion state.37 Therefore, in the limit of a large
number of configurations, the size-consistency error associ-
ated with projected HF approaches necessarily disappears.

We consider in Fig. 3 the symmetric dissociation profile
of the H2O molecule, as predicted with a variety of multi-
configuration symmetry-projected approaches. The Cartesian
cc-pVDZ basis set was used in our calculations, whereas
the FCI results from Ref. 38 were obtained with the spher-
ical cc-pVDZ basis set.39 The restored quantum numbers in
symmetry-projected calculations are s = 0 for spin and the A1

irreducible representation of the C2v group.
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FIG. 3. Symmetric dissociation profile of the water molecule as predicted
with a variety of multi-configuration symmetry-projected approaches. A
Cartesian cc-pVDZ basis set was used. FCI results from Ref. 38. The FCI
results use spherical basis functions (see text).

Results from Fig. 3 show a similar scenario as that
observed in the N2 dissociation. The C2vS-UHF dissociation
profile is already fairly parallel to the FCI solution. It ac-
counts for significantly more correlations near equilibrium
than towards dissociation with respect to the UHF solution.
With 9 symmetry-projected configurations, the FED C2vS-
UHF curve is only a few mhartree off from the FCI curve
across the entire potential energy surface.

We have been able to compute the entire dissocia-
tion profile using a 3-configuration Res HF approach based
on C2vS-UHF. Interestingly, it yields similar results as a
6-configuration FED approach near equilibrium, but be-
comes more accurate towards dissociation, rivaling the 9-
configuration FED approach. This is a result of the increased
flexibility in the Res HF ansatz. Finally, Fig. 3 also shows
the dissociation profile predicted with the C2vS-GHF method,
using a single configuration. Quite disappointingly, the re-
sults are only comparable to a two-configuration C2vS-UHF
wavefunction, even though the former is almost two orders of
magnitude more expensive to evaluate.

C. The copper oxide [Cu2O2]2+ core

We have recently applied the projected Hartree–Fock
method2 to the theoretical study of the copper oxide cores,
in particular, the interconversion profile between the μ-η2:η2-
peroxodicopper(II) (A) and the bis(μ-oxo)-dicopper(II) (B)
forms (Fig. 4).

The interconversion profile of the bare [Cu2O2]2+ core
has been recently studied theoretically by Cramer et al.,40

Malmqvist et al.,41 and Yanai et al.42 with a variety of highly
sophisticated ab initio methods. This system has proven
tremendously challenging due to the expected multi-reference
character in A and the large active space that one has to in-
clude in traditional multi-reference approaches (a reasonable
active space for this system would involve 30 electrons in 28
orbitals).

It should be pointed out that recently Liakos and Neese43

have shown that the multi-reference character in the copper
oxide core is very limited. They examined the influence of
ligands as well as relativistic and solvent effects and con-
cluded that the single-reference based local-pair natural or-
bital coupled-cluster method in fact provides very reliable
profiles for this system. Their assessment is likely valid in
the presence of ligands and solvent, and is hence relevant for
comparison with experimental results. On the other hand, we
can still treat the bare copper oxide core as a toy system for
which different highly sophisticated theoretical methods yield
inconsistent results.

O

O

Cu Cu

2+

(A)

O

Cu Cu

O

2+

(B)

FIG. 4. Structures of μ-η2:η2-peroxodicopper(II) (A) and bis(μ-oxo)-
dicopper(II) (B) in the interconversion profile of the [Cu2O2]2+ core.
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In Ref. 2 we assessed the ability of single-reference
symmetry-projected methods to accurately describe the
interconversion profile of the bare copper oxide core.
Understanding that the RASPT2 (restricted active-space
second order perturbation theory),41 CR-CC (completely
renormalized coupled-cluster),40 and DMRG-SC-CTSD
(density-matrix renormalization group with strongly con-
tracted canonical transformation including only single and
double excitations)42 methods provide the likely correct pro-
file for this system, we ranked the S-UHF, S-GHF, KS-UHF,
and KS-GHF methods according to how close they came to
the former methods. We observed that the more symmetries
restored the closer the profile got to the reference methods.
We show, in the lower panel of Fig. 5, a summary of the
results presented in Ref. 2.

We have revisited our results for the interconversion
profile of the copper oxide core with our multi-reference FED
approaches. We have employed the same basis set as our pre-
vious work, save for the fact that our program cannot cur-
rently handle spherical basis sets. The effect of the change of
basis is expected to be very small and should not affect the
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FIG. 5. Relative total energy of [Cu2O2]2+ along a linear isomerization path
from B (f = 0) to A (f = 100). A variety of single symmetry-projected config-
uration methods are shown in the bottom panel, while a multi-reference FED
approach based on D2hS-UHF is shown in the top panel. CR-CC data were
extracted from Ref. 40, while DMRG data were taken from Ref. 42. The up-
per panel uses a Cartesian basis set while the lower panel uses spherical basis
functions (see text).

conclusions of our work.44 The totally symmetric irrep of the
D2h group was restored in our calculations.

The upper panel of Fig. 5 shows the interconversion
profiles obtained by our FED D2hS-UHF approach as a
function of the number of configurations included. We
note that the restoration of spatial symmetry makes a huge
difference even when a single configuration is included.
A single-determinant D2hS-UHF approach predicts A to
be ≈38 kcal/mol higher in energy than B, and the profile
closely resembles those that we have deemed as accurate.
Increasing the number of determinants further raises the
energy of A relative to B. Our interconversion profile seems
to converge with 6 symmetry-projected configurations to a
relative energy of ≈50 kcal/mol, notably higher than the
RASPT2, CR-CC, and DMRG-SC-CTSD curves. Because
our results show a relatively smooth convergence with the
number of configurations, we believe our results could be
more accurate than the ones just quoted.

V. CONCLUSIONS

In this work we have considered a multi-component
approach to account for the correlations missing in the
symmetry-projected ansatz for the ground state of a molec-
ular system. The ground state description is improved by
making a linear combination of symmetry-projected configu-
rations constructed from a set of (generally non-orthogonal)
deformed Slater determinants. Two extreme optimization
strategies were considered: a FED approach where only the
last-added determinant is optimized (along with the full set of
linear variational coefficients), and a Res HF approach where
all the variational parameters are optimized at once.

We note that our multi-component approach is exact
in the limit of an infinite number of symmetry-projected
configurations included in the expansion, regardless of the
optimization strategy used. In such limit, the wavefunction
coincides with the coherent state representation of the exact
wavefunction

|�〉 =
( ∫ ∏

ph

dzph dz∗
ph μ(z) |z〉 〈z|

)
|�〉, (22)

where |z〉 is a generalized fermion coherent state45 generated
from a Thouless rotation out of a reference Slater determinant
|�0〉 (see, e.g., Ref. 22). Here, μ(z) is a measure guaranteeing
that the closure relation (the term in parenthesis) equals the
identity operator.

Our work has shown that for molecular systems a FED
approach tends to be more efficient than a Res HF one in
building ground state correlations, even if the latter yields a
more elegant wavefunction. This is because convergence is
easier and the optimization problem can be implemented with
linear computational cost in the number of determinants. We
have observed that a few symmetry-projected configurations
are sufficient to account for most of the correlations (both
weak and strong) in simple molecular systems, such as the
nitrogen and the water molecule. Near equilibrium, we can
even obtain variational energies (in small basis sets) that are
near the broken symmetry coupled-cluster ones, deemed to be
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exact albeit with wavefunctions that do not possess the correct
quantum numbers.

In addition, we have revisited the copper oxide cores as
an example of a challenging multi-reference system where
both static and dynamic correlations are significant. By
using a FED expansion in terms of symmetry-projected
configurations with good spatial and spin symmetries we
were able to improve our results yielding a linear isomer-
ization path with the same shape as those previously re-
ported with RASPT2, CR-CC, or DMRG-SC-CTSD. The
relative energy between the μ-η2:η2-peroxodicopper(II) and
the bis(μ-oxo)-dicopper(II) forms is predicted to be some-
what larger than that predicted with RASPT2, CR-CC, or
DMRG-SC-CTSD, at ≈50 kcal/mol.

In the examples considered in this work, we have
observed that spatial symmetry breaking and restoration bring
in a very significant amount of correlation. If a molecule has
high symmetry, static correlation from nearly degenerate con-
figurations can be expected. This correlation can be largely
accounted for by means of spatial symmetry restoration. It
is only possible to carry out such spatial symmetry breaking
and restoration in molecules with a symmetry group differ-
ent from C1 but evidently, this is consistent with the lack
of point group static correlation in nonsymmetric cases. If
one is interested in scanning over both symmetric and non-
symmetric regions of a potential energy surface for certain
atomic configurations, we advocate using the point group of
the least symmetric configuration. In this way, the energies
thereby obtained would be continuous. Any method that ex-
ploits point group symmetry (e.g., complete active space self-
consistent field (CASSCF)) may suffer from discontinuities in
changing from symmetric to non-symmetric configurations.
Lowering the symmetry is one way to avoid these discontinu-
ities although a certain amount of static correlation present in
the high-symmetry configurations would remain unaccounted
for. Furthermore, we have observed in previous work11, 18

that breaking and restoring spatial symmetry in translation-
ally invariant systems improves significantly the quality of the
calculated multi-reference wavefunctions.

An interesting question that results from this work is to
determine the most efficient prescription to account for these
correlations. We have observed, for instance, that two S-UHF
configurations tend to give energies that are of similar quality
as a single S-GHF configuration, while the latter involves a
computational effort that is roughly two orders of magnitude
larger because of the size of the respective integration grids.
This need not, however, be true for all systems: a frustrated
configuration such as an equilateral H3 triangle will un-
doubtedly benefit significantly from the use of non-collinear
deformed determinants. Given a determinantal expansion of
a fixed length, letting all the determinants be independent
will always afford the best description. Nevertheless, by
constructing a same-size expansion in terms of the superpo-
sition of the Goldstone manifolds of fewer broken-symmetry
states one may obtain a wavefunction that is near in quality
to the former one. The latter has the virtue of respecting
all symmetries of the Hamiltonian and being defined by a
smaller number of computational parameters, thus becoming
easier to optimize. Identifying those “efficient symme-

tries” is certainly of paramount importance for practical
applications.
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APPENDIX: MATRIX ELEMENTS BETWEEN
SYMMETRY-PROJECTED CONFIGURATIONS

In this appendix we provide explicit expressions for
matrix elements between symmetry-projected configurations.
We note that these can be expressed in terms of matrix ele-
ments between non-orthogonal Slater determinants, for which
an extended Wick’s theorem can be used as shown by, e.g.,
Blaizot and Ripka.22 A detailed derivation of the form of the
matrix elements can be found in, e.g., Ref. 23.

We assume a non-relativistic, Born-Oppenheimer molec-
ular electronic Hamiltonian Ĥ expressed in the form

Ĥ =
∑
μλ

gμλ a†
μ aλ + 1

4

∑
μνλσ

〈μν||λσ 〉 a†
μ a†

ν aσ aλ, (A1)

where gμλ are one-electron (core Hamiltonian) integrals
and 〈μν||λσ 〉 are anti-symmetrized two-electron integrals in
Dirac notation. In addition, we use the matrix C for molecular
orbital coefficients. In the rest of this appendix we assume the
use of an orthonormal basis; the transformation from the stan-
dard atomic orbital basis to an orthonormal one is straightfor-
ward.

Overlap and Hamiltonian matrix elements between
symmetry-projected configurations of the form P̂

j

kk′ |�〉 are
expressed in terms of norm and Hamiltonian overlaps be-
tween rotated determinants R̂(ϑ)|�〉 as〈

r�
∣∣P̂ j

kk′
∣∣ s�

〉 = 1

V

∫
V

dϑ w
j

kk′(ϑ) nrs(ϑ), (A2a)

〈
r�

∣∣Ĥ P̂
j

kk′
∣∣ s�

〉 = 1

V

∫
V

dϑ w
j

kk′(ϑ) nrs(ϑ) hrs(ϑ), (A2b)

where the left superscript r in | r�〉 is used as to label the
broken symmetry determinant. Here,

nrs(ϑ) ≡ 〈 r�|R̂(ϑ)| s�〉, (A3a)

hrs(ϑ) ≡ 〈 r�|Ĥ R̂(ϑ)| s�〉
〈 r�|R̂(ϑ)| s�〉 . (A3b)

The norm overlaps of Eq. (A3a) can be evaluated with

nrs(ϑ) = det Xrs(ϑ), (A4)

Xrs(ϑ) = Cr† R(ϑ) Cs. (A5)

Here, Cr is the set of occupied molecular orbital coefficients
in | r�〉 and is therefore a rectangular matrix of dimension
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M × N. In addition, R(ϑ) is the matrix representation of the
rotation operator R̂(ϑ) in the single-particle basis (dimension
M × M). The resulting Xrs(ϑ) is thus an N × N matrix.

The Hamiltonian overlaps of Eq. (A3b) are given by

hrs(ϑ) =
∑
μλ

[
gμλ + 1

2
Grs

μλ(ϑ)

]
ρrs

λμ(ϑ), (A6)

Grs
μλ(ϑ) =

∑
νσ

〈μν||λσ 〉 ρrs
σν(ϑ), (A7)

where we have expressed them in terms of the transition den-
sity matrix ρrs(ϑ). The latter can be built according to

ρrs(ϑ) = R(ϑ) Cs
[
Xrs(ϑ)

]−1
Cr†. (A8)

Here, as before, the matrix Cr is the rectangular matrix of
occupied molecular orbital coefficients in | r�〉.

Matrix elements appearing in contributions to the energy
gradient can also be expressed in terms of overlaps between
rotated determinants:〈

r�
p

h

∣∣P̂ j

kk′
∣∣ s�

〉 = 1

V

∫
V

dϑ w
j

kk′(ϑ) nrs(ϑ) Nrs
ph(ϑ), (A9a)

〈
r�

p

h

∣∣Ĥ P̂
j

kk′
∣∣ s�

〉 = 1

V

∫
V

dϑ w
j

kk′(ϑ) nrs(ϑ) Hrs
ph(ϑ),

(A9b)

where | r�
p

h 〉 represents a one-particle excitation (h → p) of
the determinant | r�〉. Here,

Nrs
ph(ϑ) ≡

〈
r�

p

h

∣∣R̂(ϑ)
∣∣ s�

〉
〈 r�|R̂(ϑ)| s�〉 , (A10a)

Hrs
ph(ϑ) ≡

〈
r�

p

h

∣∣Ĥ R̂(ϑ)
∣∣ s�

〉
〈 r�|R̂(ϑ)| s�〉 . (A10b)

The matrix elements of Eq. (A10) are given by

Nrs
ph(ϑ) = [Cr† ρrs(ϑ) Cr ]ph, (A11a)

Hrs
ph(ϑ) = hrs(ϑ)[Cr† ρrs(ϑ) Cr ]ph

+ [Cr† (1 − ρrs(ϑ)) f rs(ϑ) ρrs(ϑ) Cr ]ph,

(A11b)

where we have set f rs
μλ(ϑ) = gμλ + Grs

μλ(ϑ).
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