367 research outputs found
The Faint Sky Variability Survey I: Goals and data reduction process
The Faint Sky Variability Survey is aimed at finding photometric and/or
astrometric variable objects in the brightness range between 16<V<24 on
timescales between tens of minutes and years with photometric precisions
ranging from 3 millimagnitudes for the brightest to 0.2 magnitudes for the
faintest objects. An area of ~23 square degrees, located at mid and high
Galactic latitudes, has been covered using the Wide Field Camera on the 2.5m
Isaac Newton Telescope on La Palma. Here we describe the main goals of the
Faint Sky Variability Survey and the data reduction process.Comment: Accepted by MNRAS, 8 pages, 6 figure + 3 as JPEG
The Muonium Atom as a Probe of Physics beyond the Standard Model
The observed interactions between particles are not fully explained in the
successful theoretical description of the standard model to date. Due to the
close confinement of the bound state muonium () can be used as
an ideal probe of quantum electrodynamics and weak interaction and also for a
search for additional interactions between leptons. Of special interest is the
lepton number violating process of sponteanous conversion of muonium to
antimuonium.Comment: 15 pages,6 figure
Asymmetric nuclear matter:the role of the isovector scalar channel
We try to single out some qualitative new effects of the coupling to the
-isovector-scalar meson introduced in a minimal way in a
phenomenological hadronic field theory. Results for the equation of state
() and the phase diagram of asymmetric nuclear matter () are
discussed. We stress the consistency of the -coupling introduction in a
relativistic approach. New contributions to the slope and curvature of the
symmetry energy and the neutron-proton effective mass splitting appear
particularly interesting. A more repulsive for neutron matter at high
baryon densities is expected. Effects on new critical properties of warm ,
mixing of mechanical and chemical instabilities and isospin distillation, are
also presented. The influence is mostly on the {\it isovectorlike}
collective response.
The results are largely analytical and this makes the physical meaning quite
transparent. Implications for nuclear structure properties of drip-line nuclei
and for reaction dynamics with Radioactive Beams are finally pointed out.Comment: 12 pages, 10 Postscript figure
Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings
The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is
generalized by introducing couplings of mesons to derivatives of the nucleon
field in the Lagrangian density. This approach allows an effective description
of a state-dependent in-medium interaction in the mean-field approximation.
Various parametrizations for the generalized couplings are developed and
applied to infinite nuclear matter. In this approach, scalar and vector
self-energies depend on both density and momentum similarly as in the
Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much
less repulsive at high nucleon energies as compared to standard relativistic
mean field models and thus agrees better with experimental findings. The
derivative couplings in the extended model have significant effects on
properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets
We present a detailed spectroscopic study of 93 solar-type stars that are
targets of the NASA/Kepler mission and provide detailed chemical composition of
each target. We find that the overall metallicity is well-represented by Fe
lines. Relative abundances of light elements (CNO) and alpha-elements are
generally higher for low-metallicity stars. Our spectroscopic analysis benefits
from the accurately measured surface gravity from the asteroseismic analysis of
the Kepler light curves. The log g parameter is known to better than 0.03 dex
and is held fixed in the analysis. We compare our Teff determination with a
recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude)
and find very good agreement and a scatter of only 80 K, showing that for other
nearby Kepler targets this index can be used. The asteroseismic log g values
agree very well with the classical determination using Fe1-Fe2 balance,
although we find a small systematic offset of 0.08 dex (asteroseismic log g
values are lower). The abundance patterns of metals, alpha elements, and the
light elements (CNO) show that a simple scaling by [Fe/H] is adequate to
represent the metallicity of the stars, except for the stars with metallicity
below -0.3, where alpha-enhancement becomes important. However, this is only
important for a very small fraction of the Kepler sample. We therefore
recommend that a simple scaling with [Fe/H] be employed in the asteroseismic
analyses of large ensembles of solar-type stars.Comment: MNRAS, in press, 12 page
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Democracy and governance networks: compatible or not?
The relationship between representative democracy and governance networks is investigated
at a theoretical level. Four conjectures about the relationship are defined. The
incompatibility conjectures rests on the primacy of politics and sees governance networks as a
threat. The complementarity conjecture presents governance networks as a means of enabling
greater participation in the policy process and sensitivity in programme implementation. The
transitional conjecture posits a wider evolution of governance forms towards network
relationships. The instrumental conjecture views governance networks as a powerful means
through which dominant interests can achieve their goals. Illustrative implications for theory
and practice are identified, in relation to power in the policy process, the public interest, and
the role of public managers. The heuristic potential of the conjectures is demonstrated
through the identification of an outline research agenda
- …