258 research outputs found

    Conditional Symmetries and Riemann Invariants for Hyperbolic Systems of PDEs

    Get PDF
    This paper contains an analysis of rank-k solutions in terms of Riemann invariants, obtained from interrelations between two concepts, that of the symmetry reduction method and of the generalized method of characteristics for first order quasilinear hyperbolic systems of PDEs in many dimensions. A variant of the conditional symmetry method for obtaining this type of solutions is proposed. A Lie module of vector fields, which are symmetries of an overdetermined system defined by the initial system of equations and certain first order differential constraints, is constructed. It is shown that this overdetermined system admits rank-k solutions expressible in terms of Riemann invariants. Finally, examples of applications of the proposed approach to the fluid dynamics equations in (k+1) dimensions are discussed in detail. Several new soliton-like solutions (among them kinks, bumps and multiple wave solutions) have been obtained

    Elliptic solutions of isentropic ideal compressible fluid flow in (3 + 1) dimensions

    Get PDF
    A modified version of the conditional symmetry method, together with the classical method, is used to obtain new classes of elliptic solutions of the isentropic ideal compressible fluid flow in (3+1) dimensions. We focus on those types of solutions which are expressed in terms of the Weierstrass P-functions of Riemann invariants. These solutions are of special interest since we show that they remain bounded even when these invariants admit the gradient catastrophe. We describe in detail a procedure for constructing such classes of solutions. Finally, we present several examples of an application of our approach which includes bumps, kinks and multi-wave solutions

    Non-degenerate, three-wave mixing with the Josephson ring modulator

    Full text link
    The Josephson ring modulator (JRM) is a device, based on Josephson tunnel junctions, capable of performing non-degenerate mixing in the microwave regime without losses. The generic scattering matrix of the device is calculated by solving coupled quantum Langevin equations. Its form shows that the device can achieve quantum-limited noise performance both as an amplifier and a mixer. Fundamental limitations on simultaneous optimization of performance metrics like gain, bandwidth and dynamic range (including the effect of pump depletion) are discussed. We also present three possible integrations of the JRM as the active medium in a different electromagnetic environment. The resulting circuits, named Josephson parametric converters (JPC), are discussed in detail, and experimental data on their dynamic range are found to be in good agreement with theoretical predictions. We also discuss future prospects and requisite optimization of JPC as a preamplifier for qubit readout applications.Comment: 21 pages, 16 figures, 4 table

    Estimation of Air-Pressure Drop in Inclined Penstocks during an Emergency Closure of Intake Gates

    Get PDF
    Hydroelectric power is an important source of energy. This is particularly true for Quebec and some other provinces in Canada. In the event of a combination of power trip and wicket gate blockage, as an emergency response, it is necessary to close the intake gates in order to stop water flow through the penstock to the unit. Such emergency closure can cause air pressure inside the penstock chamber to drop so significantly that the safety risks to the power station structures and facilities become unacceptable. The purpose of this study is to develop analysis methods for the assessment of air pressure drop in emergency closure. The scope of this research work covers the determination of the following time-dependent quantities: water discharge beneath a sluice gate, dry air flow through air vents leading to the penstock chamber, amount of air entrained by turbulent water motions through the penstock, and the resultant changes of air pressure in the penstock chamber. The analyses are based on the energy principle and take into account a large number of variables including the upstream and downstream water levels, the geometry of the hydraulic passage, the time rate of gate closing, and features of downstream control structures. The analysis methods are applied to two cases of emergency closure of power generating stations in Quebec. The results of calculated air demand and pressure drop are in good comparison with field measurements. Emergency closure is shown to produce two significant impacts on penstocks and air vents: 1) intensified water jet in the first half of the time period it takes to close the gate; and 2) pressure drop in the last one third of the time period. Air entrainment by high-velocity flowing water is an important cause of pressure drop in emergency closure, and can be modeled using hydraulic jump entrainment equations. The values of air pressure drop calculated for the Isle-Maligne and La Tuque stations are below one third of the standard atmospheric pressure. However, there are significant air pressure fluctuations. This study has contributed to the development of quantitative framework and calculation procedures that can easily be extended for applications to other sites. The development is of engineering relevance to upgrade of existing air vents and the design of new air vents and to safe operations of emergency closure

    Persistent control of a superconducting qubit by stroboscopic measurement feedback

    Get PDF
    Making a system state follow a prescribed trajectory despite fluctuations and errors commonly consists in monitoring an observable (temperature, blood-glucose level...) and reacting on its controllers (heater power, insulin amount ...). In the quantum domain, there is a change of paradigm in feedback since measurements modify the state of the system, most dramatically when the trajectory goes through superpositions of measurement eigenstates. Here, we demonstrate the stabilization of an arbitrary trajectory of a superconducting qubit by measurement based feedback. The protocol benefits from the long coherence time (T2>10μT_2>10 \mus) of the 3D transmon qubit, the high efficiency (82%) of the phase preserving Josephson amplifier, and fast electronics ensuring less than 500 ns delay. At discrete time intervals, the state of the qubit is measured and corrected in case an error is detected. For Rabi oscillations, where the discrete measurements occur when the qubit is supposed to be in the measurement pointer states, we demonstrate an average fidelity of 85% to the targeted trajectory. For Ramsey oscillations, which does not go through pointer states, the average fidelity reaches 75%. Incidentally, we demonstrate a fast reset protocol allowing to cool a 3D transmon qubit down to 0.6% in the excited state.Comment: 7 pages, 3 figures and 1 table. Supplementary information available as an ancilla fil

    Far-Infrared Observations of the Very Low Luminosity Embedded Source L1521F-IRS in the Taurus Star-Forming Region

    Get PDF
    We investigate the environment of the very low luminosity object L1521F-IRS using data from the Taurus Spitzer Legacy Survey. The MIPS 160 μm image shows both extended emission from the Taurus cloud and emission from multiple cold cores over a 1° × 2° region. Analysis shows that the cloud dust temperature is 14.2 ± 0.4 K and the extinction ratio is A_(160)/A_K = 0.010 ± 0.001 up to A_V ~ 4 mag. We find κ_(160) = 0.23 ± 0.046 cm^2 g^(–1) for the specific opacity of the gas-dust mixture. Therefore, for dust in the Taurus cloud we find that the 160 μm opacity is significantly higher than that measured for the diffuse interstellar medium, but not too different from dense cores, even at modest extinction values. Furthermore, the 160 μm image shows features that do not appear in the IRAS 100 μm image. We identify six regions as cold cores, i.e., colder than 14.2 K, all of which have counterparts in extinction maps or C^(18)O maps. Three of the six cores contain embedded young stellar objects, which demonstrates the cores are sites of current star formation. We compare the effects of L1521F-IRS on its natal core and find there is no evidence for dust heating at 160 or 100 μm by the embedded source. From the infrared luminosity L_(TIR) = 0.024 L_⊙ we find L_(bol_int) = 0.034 - 0.046 L_⊙, thus confirming the source's low luminosity. Comparison of L1521F-IRS with theoretical simulations for the very early phases of star formation appears to rule out the first core collapse phase. The evolutionary state appears similar to or younger than the class 0 phase, and the estimated mass is likely to be substellar

    Novel Mycobacterium tuberculosis Complex Pathogen, M. mungi

    Get PDF
    Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown

    Experimental Mycobacterium bovis infection in three white rhinoceroses (Ceratotherium simum):Susceptibility, clinical and anatomical pathology

    Get PDF
    Tuberculosis caused by Mycobacterium bovis is endemic in the African buffalo (Syncerus caffer) population in the Kruger National Park and other conservation areas in South Africa. The disease has been diagnosed in a total of 21 free ranging or semi-free ranging wildlife species in the country with highly variable presentations in terms of clinical signs as well as severity and distribution of tuberculous lesions. Most species are spillover or dead-end hosts without significant role in the epidemiology of the disease. White rhinoceroses (Ceratotherium simum) are translocated from the Kruger National Park in substantial numbers every year and a clear understanding of their risk to manifest overt tuberculosis disease and to serve as source of infection to other species is required. We report the findings of experimental infection of three white rhinoceroses with a moderately low dose of a virulent field isolate of Mycobacterium bovis. None of the animals developed clinical signs or disseminated disease. The susceptibility of the white rhinoceros to bovine tuberculosis was confirmed by successful experimental infection based on the ante mortem isolation of M. bovis from the respiratory tract of one rhinoceros, the presence of acid-fast organisms and necrotizing granulomatous lesions in the tracheobronchial lymph nodes and the detection of M. bovis genetic material by PCR in the lungs of two animals

    Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife

    Get PDF
    Numerous species of mammals are susceptible to Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). Several wildlife hosts have emerged as reservoirs of M. bovis infection for domestic livestock in different countries. In the present study, blood samples were collected from Eurasian badgers (n=1532), white-tailed deer (n=463), brushtail possums (n=129), and wild boar (n=177) for evaluation of antibody responses to M. bovis infection by a lateral-flow rapid test (RT) and multiantigen print immunoassay (MAPIA). Magnitude of the antibody responses and antigen recognition patterns varied among the animals as determined by MAPIA; however, MPB83 was the most commonly recognized antigen for each host studied. Other seroreactive antigens included ESAT-6, CFP10, and MPB70. The agreement of the RT with culture results varied from 74% for possums to 81% for badgers to 90% for wild boar to 97% for white-tailed deer. Small numbers of wild boar and deer exposed to M. avium infection or paratuberculosis, respectively, did not cross-react in the RT, supporting the high specificity of the assay. In deer, whole blood samples reacted similarly to corresponding serum specimens (97% concordance), demonstrating the potential for field application. As previously demonstrated for badgers and deer, antibody responses to M. bovis infection in wild boar were positively associated with advanced disease. Together, these findings suggest that a rapid TB assay such as the RT may provide a useful screening tool for certain wildlife species that may be implicated in the maintenance and transmission of M. bovis infection to domestic livestock.The authors are grateful to Peter Andersen and Jim McNair for kindly providing certain antigens used in C this study. Badger samples were taken under projects funded by the Department for Environment, Food, and Rural Affairs (Defra), UK. The authors acknowledge the support of staff from CSL, VLA Starcross, Defra Wildlife Unit, and permission from the Independent Scientific Group for use of sera from the RBCT. Spanish wild boar samples were obtained with support from MEC Plan Nacional AGL2005-07401 and Santander - Fundacion M. Botin

    A Single-Step Sequencing Method for the Identification of Mycobacterium tuberculosis Complex Species

    Get PDF
    The Mycobacterium tuberculosis complex (MTC) comprises several closely related species responsible for strictly human and zoonotic tuberculosis. Some of the species are restricted to Africa and were responsible for the high prevalence of tuberculosis. However, their identification at species level is difficult and expansive. Accurate species identification of all members is warranted in order to distinguish between strict human and zoonotic tuberculosis, to trace source exposure during epidemiological studies, and for the appropriate treatment of patients. In this paper, the Exact Tandem Repeat D (ETR-D) intergenic region was investigated in order to distinguish MTC species. The ETR-D sequencing unambiguously identified MTC species type strain except M. pinnipedii and M. microti, and the results agreed with phenotypic and molecular identification. This finding offers a new tool for the rapid and accurate identification of MTC species in a single sequencing reaction, replacing the current time-consuming polyphasic approach. Its use could assist public health interventions and aid in the control of zoonotic transmission in African countries, and could be of particular interest with the current emergence of multidrug-resistant and extended-resistance isolates
    corecore