477 research outputs found

    BRICS' role in global health and the promotion of universal health coverage: the debate continues.

    Get PDF
    The acronym BRIC was coined by Jim O’Neill, a senior executive at Goldman Sachs, to denote four emerging national economies: Brazil, the Russian Federation, India and China. Although BRICS and other multinational groupings may be useful to policy-makers involved in the development of some foreign policies, it remains unclear if such groupings have a role in the study and development of global health policy. We examine the debate around this issue and focus on BRICS’ potential role in the promotion of universal health coverage – an “umbrella” goal for health in the post-2015 development framework. We do not argue that BRICS has no value as a grouping. The constituent nations do have some things in common: they are all large, populous, diverse countries with many different ethnic, social and – in some cases – religious divisions. They share these characteristics with some other countries, such as Indonesia, Nigeria, Indonesia and Pakistan, that have made less progress toward universal health coverage but may be able to learn from BRICS’ experiences. There is no doubt that, in the promotion of universal health coverage, there is a need for collaboration and shared learning. However, a grouping of countries that may make sense in the coordination of global macroeconomic policy cannot be assumed to be relevant in the development of any global health policy

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms

    Integrated Epigenome Profiling of Repressive Histone Modifications, DNA Methylation and Gene Expression in Normal and Malignant Urothelial Cells

    Get PDF
    Epigenetic regulation of gene expression is commonly altered in human cancer. We have observed alterations of DNA methylation and microRNA expression that reflect the biology of bladder cancer. This common disease arises by distinct pathways with low and high-grade differentiation. We hypothesized that epigenetic gene regulation reflects an interaction between histone and DNA modifications, and differences between normal and malignant urothelial cells represent carcinogenic events within bladder cancer. To test this we profiled two repressive histone modifications (H3K9m3 and H3K27m3) using ChIP-Seq, cytosine methylation using MeDIP and mRNA expression in normal and malignant urothelial cell lines. In genes with low expression we identified H3K27m3 and DNA methylation each in 20–30% of genes and both marks in 5% of genes. H3K9m3 was detected in 5–10% of genes but was not associated with overall expression. DNA methylation was more closely related to gene expression in malignant than normal cells. H3K27m3 was the epigenetic mark most specifically correlated to gene silencing. Our data suggest that urothelial carcinogenesis is accompanied by a loss of control of both DNA methylation and H3k27 methylation. From our observations we identified a panel of genes with cancer specific-epigenetic mediated aberrant expression including those with reported carcinogenic functions and members potentially mediating a positive epigenetic feedback loop. Pathway enrichment analysis revealed genes marked by H3K9m3 were involved with cell homeostasis, those marked by H3K27m3 mediated pro-carcinogenic processes and those marked with cytosine methylation were mixed in function. In 150 normal and malignant urothelial samples, our gene panel correctly estimated expression in 65% of its members. Hierarchical clustering revealed that this gene panel stratified samples according to the presence and phenotype of bladder cancer

    Influence of surface geometry on the culture of human cell lines: a comparative study using flat, round-bottom and v-shaped 96 well plates

    Get PDF
    © 2017 Shafaie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS) methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates), as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial), A549 (alveolar epithelial) and Malme-3M (dermal fibroblastic) cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS), LDH release profiles (CytoTox ONE) and absolute cell counts (Guava ViaCount), respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05) on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05) at the later time point. Accordingly, these results highlight the impact of substrate geometry on the culture of a cell line and the influence it has on the cells' correct growth and differentiation characteristics. As such, these results provide important implications in many aspects of cell biology the development of a HTS, in vitro, cell based systems to further investigate different aspects of toxicity testing and drug delivery.Peer reviewedFinal Published versio

    A molecular assay for sensitive detection of pathogen-specific T-cells.

    Get PDF
    Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR) for two reporters--monokine-induced by IFN-γ (MIG) and the IFN-γ inducible protein-10 (IP10). We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB) specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10)-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001). Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL) volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings

    The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA

    Get PDF
    The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich ‘structurally poor’ RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5–100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using ‘structurally poor’ RNA domains in regulating biological process

    The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease

    Get PDF
    BackgroundStrongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.Principal FindingsHere we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified.ConclusionsOverall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite

    BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    Get PDF
    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv

    Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases.</p> <p>Methods</p> <p>We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation.</p> <p>Results</p> <p>We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients.</p> <p>Conclusions</p> <p>Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should therefore be evaluated in larger prospective studies.</p
    corecore