249 research outputs found
Multicellular Interactions in 3D Engineered Myocardial Tissue
Cardiovascular disease is a leading cause of death in the US and many countries worldwide. Current cell-based clinical trials to restore cardiomyocyte (CM) health by local delivery of cells have shown only moderate benefit in improving cardiac pumping capacity. CMs have highly organized physiological structure and interact dynamically with non-CM populations, including endothelial cells and fibroblasts. Within engineered myocardial tissue, non-CM populations play an important role in CM survival and function, in part by secreting paracrine factors and cell-cell interactions. In this review, we summarize the progress of engineering myocardial tissue with pre-formed physiological multicellular organization, and present the challenges toward clinical translation
Recommended from our members
Multi-scale cellular engineering: From molecules to organ-on-a-chip.
Recent technological advances in cellular and molecular engineering have provided new insights into biology and enabled the design, manufacturing, and manipulation of complex living systems. Here, we summarize the state of advances at the molecular, cellular, and multi-cellular levels using experimental and computational tools. The areas of focus include intrinsically disordered proteins, synthetic proteins, spatiotemporally dynamic extracellular matrices, organ-on-a-chip approaches, and computational modeling, which all have tremendous potential for advancing fundamental and translational science. Perspectives on the current limitations and future directions are also described, with the goal of stimulating interest to overcome these hurdles using multi-disciplinary approaches
Recommended from our members
Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening
Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches. Gene set enrichment analysis of engineered muscle cultured in microgravity, compared to normal gravity conditions, highlighted a metabolic shift toward lipid and fatty acid metabolism, along with increased apoptotic gene expression. The addition of pro-regenerative drugs, insulin-like growth factor-1 (IGF-1) and a 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-i), partially inhibited the effects of microgravity. In summary, microgravity mimics aspects of impaired myogenesis, and the addition of these drugs could partially inhibit the effects induced by microgravity
Murine Model of Hindlimb Ischemia
In the United States, peripheral arterial disease (PAD) affects about 10 million individuals, and is also prevalent worldwide. Medical therapies for symptomatic relief are limited. Surgical or endovascular interventions are useful for some individuals, but long-term results are often disappointing. As a result, there is a need for developing new therapies to treat PAD. The murine hindlimb ischemia preparation is a model of PAD, and is useful for testing new therapies. When compared to other models of tissue ischemia such as coronary or cerebral artery ligation, femoral artery ligation provides for a simpler model of ischemic tissue. Other advantages of this model are the ease of access to the femoral artery and low mortality rate
Recommended from our members
Big bottlenecks in cardiovascular tissue engineering.
Although tissue engineering using human-induced pluripotent stem cells is a promising approach for treatment of cardiovascular diseases, some limiting factors include the survival, electrical integration, maturity, scalability, and immune response of three-dimensional (3D) engineered tissues. Here we discuss these important roadblocks facing the tissue engineering field and suggest potential approaches to overcome these challenges
nAChRs Mediate Human Embryonic Stem Cell-Derived Endothelial Cells: Proliferation, Apoptosis, and Angiogenesis
Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs).To induce endothelial cell differentiation, undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days, CD31(+) cells (13.7+/-2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation, these hESC-ECs expressed endothelial specific markers such as vWF (96.3+/-1.4%), CD31 (97.2+/-2.5%), and VE-cadherin (93.7+/-2.8%), form vascular-like channels, and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward, 5x10(6) hESC-ECs treated for 24 hours with nicotine (10(-8) M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 microg/ml) in the drinking water. Surprisingly, bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally, in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs).This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs, and enhance their angiogenic effects in vivo. Furthermore, activation of nAChRs has anti-apoptotic, angiogenic, and proliferative effects through MAPK and Akt signaling pathways
On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex
The Lagrangian dynamics of zonal jets in the atmosphere are considered, with
particular attention paid to explaining why, under commonly encountered
conditions, zonal jets serve as barriers to meridional transport. The velocity
field is assumed to be two-dimensional and incompressible, and composed of a
steady zonal flow with an isolated maximum (a zonal jet) on which two or more
travelling Rossby waves are superimposed. The associated Lagrangian motion is
studied with the aid of KAM (Kolmogorov--Arnold--Moser) theory, including
nontrivial extensions of well-known results. These extensions include
applicability of the theory when the usual statements of nondegeneracy are
violated, and applicability of the theory to multiply periodic systems,
including the absence of Arnold diffusion in such systems. These results,
together with numerical simulations based on a model system, provide an
explanation of the mechanism by which zonal jets serve as barriers to
meridional transport of passive tracers under commonly encountered conditions.
Causes for the breakdown of such a barrier are discussed. It is argued that a
barrier of this type accounts for the sharp boundary of the Antarctic ozone
hole at the perimeter of the stratospheric polar vortex in the austral spring.Comment: Submitted to Journal of the Atmospheric Science
- …