1,998 research outputs found

    A fast, preconditioned conjugate gradient Toeplitz and Toeplitz-like solvers

    Get PDF
    AbstractFor a Toeplitz or Toeplitz-like matrix T, we define a preconditioning applied to the symmetrized matrix THT, which decreases the condition number compared to the one of THT and even the one of T. This enables us to accelerate the conjugate gradient algorithm for solving Toepiltz and Toeplitz-like linear systems, thus extending the previous results of [1], restricted to the Hermitian positive definite case. The extension relies on some recent formulae of Gohberg and Olshevsky for the inverses of Toeplitz-like matrices

    Identifiyng the emerging roles of nanoparticles in biosensors

    Full text link
    This paper profiles R&D on the application of nanoparticles in biosensors and explores potential application development pathways. The analysis uses a dataset of nanotechnology publication records for the time period 2001 through 2008 (part year) extracted from the Science Citation Index. It focuses on emergent research activities in the most recent years. Bibliometric analyses are employed to ascertain R&D trends and research networks for key biosensors. Growth models are fit to forecast the technological trend for nanoparticle-enhanced biosensor research activity. In addition, a combination of quantity (publication) and quality (citation) analysis for nanoparticle-enhanced biosensors helps position the leading countries in this research field. Science overlay mapping shows different emphases of nanoparticle-enhanced biosensor research between the US and China, the leading countries. Recent studies suggest that nano-enhanced biosensors show promise for gains in stability, sensitivity, selectivity, and accuracy - for both direct and indirect detection. This paper demonstrates how bibliometric analyses can help anticipate emerging technology development and application potential.<br

    Conserving and Gapless Approximations for an Inhomogeneous Bose Gas at Finite Temperatures

    Full text link
    We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self--consistent Hartree--Fock--Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg--Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single--particle Green's function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints.Comment: plain tex, 19 page

    Spectroscopy of vibrational modes in metal nanoshells

    Full text link
    We study the spectrum of vibrational modes in metal nanoparticles with a dielectric core. Vibrational modes are excited by the rapid heating of the particle lattice that takes place after laser excitation, and can be monitored by means of pump-probe spectroscopy as coherent oscillations of transient optical spectra. In nanoshells, the presence of two metal surfaces results in a substantially different energy spectrum of acoustic vibrations than for solid particles. We calculated the energy spectrum as well as the damping of nanoshell vibrational modes. The oscillator strength of fundamental breathing mode is larger than that in solid nanoparticles. At the same time, in very thin nanoshells, the fundamental mode is overdamped due to instantaneous energy transfer to the surrounding medium

    Pharmacological treatments in pregnant women with psoriasis in the U.S.A.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110872/1/bjd13306.pd

    Fluorographynes: Stability, Structural and Electronic Properties

    Full text link
    The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (fluorographynes) with variable F/C stoichiometry. Here, employing DFT band structure calculations, we examine a series of fluorographynes, and the trends in their stability, structural and electronic properties have been discussed as depending on their stoichiometry: from C2F3 (F/C= 1.5) to C4F7 (F/C= 1.75).Comment: 13 pages, 3 table

    Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures

    Get PDF
    Magnetic skyrmions are chiral spin structures recently observed at room temperature in multilayer films. Their topological stability will enable high scalability in confined geometries—a sought-after attribute for device applications. Despite numerous theoretical studies examining sub-100-nm Néel skyrmions in nanostructures, in practice their ambient stability and evolution with confinement and their magnetic parameters remain to be established. Here we present the zero-field stabilization of sub-100-nm room-temperature Néel-textured skyrmions confined in Ir/Fe(x)/Co(y)/Pt nanodots over a wide range of magnetic and geometric parameters. The zero-field skyrmion size, here as small as approximately 50 nm, can be tailored by a factor of 4 with variation of dot size and magnetic interactions. Crucially, skyrmions with differing thermodynamic stability exhibit an unexpected dichotomy in confinement phenomenologies. These results establish skyrmion phenomenology in multilayer nanostructures, and prompt the synergistic use of magnetic and geometric parameters to achieve desired properties in devices

    Catastrophic consequences of kicking the chameleon

    Get PDF
    The physics of the "dark energy" that drives the current cosmological acceleration remains mysterious, and the dark sector may involve new light dynamical fields. If these light scalars couple to matter, a screening mechanism must prevent them from mediating an unacceptably strong fifth force locally. Here we consider a concrete example: the chameleon mechanism. We show that the same coupling between the chameleon field and matter employed by the screening mechanism also has catastrophic consequences for the chameleon during the Universe's first minutes. The chameleon couples to the trace of the stress-energy tensor, which is temporarily nonzero in a radiation-dominated universe whenever a particle species becomes nonrelativistic. These "kicks" impart a significant velocity to the chameleon field, causing its effective mass to vary nonadiabatically and resulting in the copious production of quantum fluctuations. Dissipative effects strongly modify the background evolution of the chameleon field, invalidating all previous classical treatments of chameleon cosmology. Moreover, the resulting fluctuations have extremely high characteristic energies, which casts serious doubt on the validity of the effective theory. Our results demonstrate that quantum particle production can profoundly affect scalar-tensor gravity, a possibility not previously considered. Working in this new context, we also develop the theory and numerics of particle production in the regime of strong dissipation

    Self-Trapping, Quantum Tunneling and Decay Rates for a Bose Gas with Attractive Nonlocal Interaction

    Full text link
    We study the Bose-Einstein condensation for a cloud of 7^7Li atoms with attractive nonlocal (finite-range) interaction in a harmonic trap. In addition to the low-density metastable branch, that is present also in the case of local interaction, a new stable branch appears at higher densities. For a large number of atoms, the size of the cloud in the stable high-density branch is independent of the trap size and the atoms are in a macroscopic quantum self-trapped configuration. We analyze the macroscopic quantum tunneling between the low-density metastable branch and the high-density one by using the istanton technique. Moreover we consider the decay rate of the Bose condensate due to inelastic two- and three-body collisions.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore