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A b s t r a c t - - F o r  a Toeplitz or Toeplitz-like matrix T, we define a preconditioning applied to the 
symmetrized matrix TnT, which decreases the condition number compared to the one of TnT  and 
even the one of T. This enables us to accelerate the conjugate gradient algorithm for solving Toepiltz 
and Toeplitz-like linear systems, thus extending the previous results of [1], restricted to the Hermitian 
positive definite case. The extension relies on some recent formulae of Gohberg and Olshevsky for 
the inverses of Toeplitz-like matrices.. 

geywords- -Toepl i t~ ,  systems of linear equations, Toeplitz solver, Toeplitz-like systems, Precon- 
ditioned conjugate gradient method, Inversion of Toeplitz-like matrices. 

1. I N T R O D U C T I O N  

We present a new approach to preconditioning of an unsymmetric Toeplitz matr ix  T, which 
substantial ly improves the solution of unsymmetric Toeplitz linear systems of n equations, by 
means of the conjugate gradient method. The approach also works for the more general class of 
Toeplitz-like linear systems too. 

In contrast  to the direct Toeplitz solvers using order of the n 2 or n log2n ari thmetic opera- 
tions [2-8], the conjugate gradient method requires O (knlogn) operations, where k = k(T) is 

the condition number  of T. Therefore, the method is particularly effective for well-conditioned 
Toeplitz linear systems, which motivates the search for good preconditioners tha t  would decrease 

the condition number  and preserve the Toeplitz structure. 

In [1], such effective preconditioning was proposed for Hermitian (or real symmetric)  positive 
definite (hereafter, h.p.d.) Toeplitz systems, based on factorization of T into the product  

= (r +.I) (I-.(r +.x)-') T 
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for a scalar #. The key idea of [1] is that  an appropriate choice of the scalar # defined by two 
extreme eigenvalues of T implies a substantial decrease of the condition number of both factors 
relatively to k and thus substantially accelerates the solution of an associated Toeplitz linear 
system. This algorithm, however (as well as other competitive iterative preconditioned Toeplitz 
solvers [9-12]), works neither for the unsymmetric nor for Toeplitz-like cases, which are also 
highly important  in computational practice. 

The present paper gives a desired extension of the algorithm of [1] to these cases. The extension 
relies on the properties of the circulant and skew-circulant displacement operators associated with 
Toeplitz and Toeplitz-like matrices and, in particular, on the recent explicit formulae expressing 
the displacement generators of the inverses of such matrices via few vectors associated with the 
inverses [13]• More specifically, we replace T by its symmetrization T H T  and respectively change 

the factorization. T H T  + # I  and I - # (THT + #I ) -1  are still Toeplitz-like matrices, which we 

represent by using their short displacement generators and the explicit formulae from [13]. This 

still enables fast multiplication of the matrix I - # (THT + # I ) -  1 by a vector and leads to the 
desired extension of the algorithm of [1], defining fast Toeplitz-like solvers, in the case of an 
ill-conditioned input. 

In our presentation, we t ry  to follow the line of [1]. In the next section, we recall some relevant 
results on displacement representation of Toeplitz-like matrices. In Section 3, we show a general 
outline of the method. In Section 4, we specify various policies of choosing the parameter # and 
their influence on the number of arithmetic operations required for the solution of Toeplitz and 
Toeplitz-like linear systems. In Section 5, we specify the more effective solver in the Toeplitz 
case .  

2. S O M E  P R O P E R T I E S  OF T O E P L I T Z - L I K E  M A T R I C E S  

DEFINITION 2.1. (Compare [14, Definition 2.11.1].) Let F : Fm,n ~ Fm,n be an operator, let 
A E Fmxn, and let G E Fmxt, H E Fnxl denote two matrices such that F(A)  = GH x.  Then 
I = rank(F(A)) ,  the rank of the matrix F(A), is called the F-rank of A, and the pa/r  of the 
matrices G and H is called an F-generator of A of length l. 

Given a scalar ¢ ¢ 0, an m x m matrix X, and an n x n matrix Y, define the operator 
F(x,y) (A) = A - X A Y  and specify a displacement operator of Toeplitz-type as follows: 

F(A)  = F(z~,zS~)(A ) = A - ZcAZT1/¢, 

I o . (1)  
Z ¢ =  0 1 

DEFINITION 2.2. An m x n matr ix is cal/ed a Toeplitz-like matrix f l i t  has F-rank bounded from 
above by a constant independent of m and n, where F is the operator defined in (1). 

Hereafter, let ¢ -- 1, Z -- Z1. We have the following basic lemmas. 

LEMMA 2.1. [14] Let A E Fnxn, B ~ Fmxm be two Toeplitz-like matrices g/ven with their 
F-generators of lengths IA and 1B, respectively. Then A B  is a Toepiltz-like matrix having an 
F-generator of length lAB <_ lA q- lB. 

PROOF. It follows from the observation that  F ( A B )  = F ( A ) B  + Z A Z T F ( B ) .  

LEMMA 2.2. (Compare [13-15].) Let A be a nonsingular Toeplitz-like matr/x with an F-generator 
F(A)  = G1H T of length IA. Then A -1 is a Toeplitz-like matrix with an F-generator equal to 
GH T, where G = -A-1G1,  H T = H [ Z A - 1 Z  T. 
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PROOF. Immediate. 

From these results, we have the following corollary. 

COROLLARY 2.1. Let  T be an n x n Toeplitz-lJke matrix with an F-generator of  length IT. Then 
B = T H T  + #I ,  C = I - # B  -1 are Toeplitz-like matrices with IB <_ 2IT and lc  <_ 21T, provided 

that - #  is not an eigenvalue of  THT .  

DEFINITION 2.3. [14] An  m x n matrix Circe(r) = Circ(¢,m,n)(r) = [zij], for a vector r = 

[ r0 , . . . ,  rm-1] T and for a scalar ¢ # O, is called a ¢-circulant matrix ff z~,j = ri-jmodm for i ~ j ;  

Zi,j = C r i - j m o d m  for i < j .  

Hereafter, l will stand for IT. 

3. A C O N D I T I O N - I M P R O V I N G  M A T R I X  F A C T O R I Z A T I O N  

LEMMA 3.1. [1] Let A be an n x n matrix, B = A + #I ,  C = I - # B  -1. Then A = B C  = C B .  

I f - #  is not  an eigenvalue of  A, then both B and C have inverses, and A -1 = C - 1 B  -1 -- B - 1 C  -1 . 

Let the eigenvalues of A, B and C be given by 

Ol n ~__ Oln-- 1 <: " '"  ~_ O~ 1 = A(A), 

~ .  <: /~.--1 <-- " ' "  ~-- ~1 -~ A(B),  

~ .  < ~ - 1  < . . .  < 7~ = ~ ( c ) .  

By the definition of B and C, we have 

Z~ = a ,  + . ,  vj = 1 - . Z 2 1  

LEMMA 3.2. [1] Let  A, B and C be as above and let # > O. Then the condition numbers of  B 

and C are given by 

k(B) = 0~I + ~ and (2) 
~n +# 

C~-": k Cgl "~- " ] '  (3) 

so that  for all # > O, we have 

k(A)  = k (B)k (C) .  (4) 

LEMMA 3.3. [1] Let  t~ = ~ .  Then k (B)  = k(C)  = V / ~ .  

4. A FAST T O E P L I T Z - L I K E  SOLVER 

Consider the linear system 

T x  = b, (5) 

where T is an n x n nonsingular Toeplitz-like matrix, given with its F-generator of length 1. 
Apply the matr ix factorization of the previous section to the linear system, 

T H T x  = THb. (6) 

Let  A = T H T ,  then A is an n x n h.p.d. Toeplitz-like matrix, IA <_ 21. Define B = A + / z I ,  
C = I - #B  -1. Suppose that  - #  is not an eigenvalue of A. Then, by the results of the previous 
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section, B and C are nonsingular Toeplitz-like matrices with Is  <_ 21 and lc  <_ 2l. By the results 
of [13], B -1 is completely defined by its last row and its F-generator: 

2a 1 
B - I =  Circlr + ~ E Circ~ (rm)Circl (sVm), (7) 

where ¢ is arbitrary, ¢ ~ 1, Circlr is the 1-circulant matrix with the last row equal to yT. 
Furthermore, rm, sm and yT satisfy the following equations: 

Brm = gin, (8) 

B t m  = -z hm, (9) 

s m =  Zl tm,  m = 1, 2 . . . .  ,2l, (10) 

By  = en-1, en-1 = (0, 0 , . . . ,  1) T, (11) 

where G = [gl,... ,g21], H = [hi , . . . ,  h21] of A. Therefore, we have the following algorithm: 

ALGORITHM 1. 

Input: An n x n nonsigular Toeplitz-like matrix T, a vector b, and a shift value #. 

Output: T-lb. 

Stage 1: Solve the equations (8), (9), (10) and (11). 

Stage 2: Solve B z  = THb. 

Stage 3" Solve Cx = z; return x. 

We use conjugate gradient (CG) method [16] to obtain the solution at Stages 1 and 3 in nB 
and nc  iteration steps, respectively. Stage 2 amounts to 2a + 1 multiplications of f-circulant 
matrices by vectors for f = 1 and f = ¢ (see the representation (7)). Therefore, by the well- 
known results (see, e.g., [13]), the arithmetic cost of performing Stage 1, i.e., the arithmetic cost 
of performing nB steps of the CG iteration on B, equals 

cost(B) = (4/+ 1)(4l + 3)¢(n)nB, 

and similarly at Stage 3, we have 

cost(C) -- (4/+ 3)¢(n)nc, 

for n c  iterations of CG, where ¢(n) is the cost of an n-point FFT. 

4.1. The Optimal Shift 

We will next follow [1] by choosing the optimal # such that the total work [(4/+ 1)(4l + 3)nB + 
(4l + 3)nc]¢(n) is minimized, where nB and nc  are the numbers of steps of the CG iteration at 
Stages 1 and 3, respectively. Let 

n B =  F V ~ ( - ~ ,  (12) 

nc = Fv (C), (13) 

where F is a constant. Then by (4), 

n B n c  = F 2 x /k(A)  = M = constant. 
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Define M 
f ( n B ) =  L n s  + nc  = LnB + ~ ,  

n B  

where L = 4l + 1. Then f (riB) is minimized at 

nB = , nc  = LnB. (14) 

In view of (12)-(14), we choose # satisfying 

k(C) = L2k(B).  (15) 

Use (2), (3) and let # = m av/-&-i~n. We have the following equation: 

m 2 (L 2 - k(A)) + m [2 (L 2 - 1) V / ' ~ ]  + (LZk(A) - 1) = O, 

s o  
- (n  2 -  1) ~ + L ( k ( A )  - 1) 

m .  = L 2 - k(A) ' 

where k(A) = at~an, L = 41 + 1. Since L > 5, k(A) _> 1, we have m_ > 0 only for k(A) > L 2. 

LEMMA 4.1. [1] Let # = m a v e n  , where m = m_ (see above). Then 

k(B)  = L - t  x /k(A) ,  (16) 

k( C) = Lv/k'-(-~. (17) 

Now assume (14) and choose/~ = m_ av/-ff~-~n. Then the total cost is 

( 4 / +  3)[(4/+ 1)rib + nc]¢(n) = (4 /+  3) (Lns  + nc)  ¢(n) 

= 2 (4 /+  3)Fv/k (C)¢(n)  (18) 

= 2(4l + 3) 4 1 ~ k l / 4 ( A ) f ¢ ( n ) .  

For comparison, let nCG be the number of iterations required by CG for A. We have 

Cost(CG) = (4 /+  3)ncG¢(n) = (4 /+  3)kl /2(A)F¢(n) .  (19) 

Comparing with (18), we can see an improvement for k(A) > 16(4l + 1) 2. 

4.2. Recursive Preconditioning 

We may use the factorization A = T H T  = B C  recursively. In particular, we may solve 
equations (8), (9) and (11) at Stage 1 of Algorithm 1 by choosing one optimal shift #1, and we 
may choose another optimal shift/~z to solve the system Cx = z for x at Stage 3 of Algorithm 1. 
Since we have lB <_ 2l, Iv < 21 (where Iw denotes the length of an F-generator of W, for W = B, 
W = C), it follows from (18), that  the total computational cost of performing Stages 1 and 3 is 
bounded by 

2 (8 /+  1)(81 + 3) S l v ~ k l / 4 ( B ) F ¢ ( n )  (20) 

and 
2 (8 /+  3)8/v/~'~"~ kl /4(C)F¢(n) ,  (21) 

respectively. Now we choose # so as to minimize the sum of (20) and (21). Since k(A) = 

k (B)k(C) ,  we have the solutions k(B)  = ~ ,  k(C) = (8 /+  1)2k1 /2 (A) ,  and  

a n k t / 2 ( A ) [ k t / 2 ( A ) ( 8 1  "-1- 1) 2 - 1] 

Id = k t / 2 ( A )  - (8Z + 1) 2 
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We have # > 0 for k(A) > (8/+ 1) 4, and the total computational cost of recursive preconditioning 
is 

4 (8 /+  1)(8/+ 3)F¢(n)kl/S(A). (22) 

This is less than the cost (18) of nonrecursive preconditioning for 

2s(81 + 1)s(81 + 3) s 
k(A) > 

(4l + i)4(4/+ 3) s 

and is also less than the cost of application of the unpreconditioned (CG) method to Ax = b 
[4(81+I)(8/+3) ] 8/3 

(see (19)) when k(A) > [ 41+3 j • 

For l = 2,3, we compare the estimates (18), (19) and (22) and show the results in the next 
table. 

Cost I = 2 l = 3 

CG me thod  llkl/2(A)F¢(n) 15kl/2(A)F¢(n) 
nonrecursive 66kl/4(A)F¢(n) 30v/~kl/a(A)F¢(n) 

recursive 1292kl/S(A)F¢(n) 2700kl/S(A)F¢(n) 

5. P R E C O N D I T I O N E D  C G  M E T H O D  F O R  A T O E P L I T Z  M A T R I X  

In this section, we use the same notation as in the previous section, except that T now denotes 
a nonsingular Toeplitz matrix (so that  l = 2). Since B = THT + #I, multiplying the matrix B 
by a vector costs 8¢(n) + O(n). Thus in Algorithm 1, we have cost(B) = 72¢(n) at Stage 1. 
By [13], cost(C) = l l¢ (n )  at Stage 3, for each iteration. Therefore, the overall work is equal to 

72 
(72ns + l l n c ) ¢ ( n ) =  11 (LnB + n o )  ¢(n), L =  ]-~, 

where n s  and nc denote the number of the CG iterations at Stages I and 3, respectively. Assume 
the optimal value of # = m_ aV~-~n, where 

- (L2 - 1) V / ~  + L(k(A) - 1) 

m± = L 2 - k(A) 

Then, similarly to (17), we derive the following cost bound for the entire computation: 

22nc¢(n) : 1 2 v ~ k l / 4 ( A ) F ¢ ( n ) .  (23) 

We may compare the bound of (23) to the cost of the solution via the CG method (without 
preconditioning), which is estimated similarly to (19) and is bounded by 

8kl/2(A) F¢(n). (24) 

The comparison shows that  our preconditioning improves the CG method for 

k(A) > 2450.25. 

Now, we use the factorization A = BC recursively. We choose #1 so as to minimize the cost of 
performing Stage 1 of Algorithm 1, which gives us the bound 

9 . 1 2 .  v ~  kl/4(B)F¢(n) = 1 0 8 v ~  kl/4(B)F¢(n), (25) 
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where the factor 9 comes from the equations at Stage I. At Stage 3, choose #2 so as to decrease 

the cost to 
4 (8 .4  + 1 ) (8 .4  + 3 ) F ¢ ( n ) k l / s ( c )  = 4 6 2 0 F ¢ ( n ) k l / 8 ( C )  (26) 

(compare (22)). Now we choose # so as to minimize the sum of (25) and (26). Then we obtain 
that  

/ 1 1 5 5 ~ s  "224/31 . kl/3(A) ' k ( B )  = \ - - ~ - ]  

( 5 4 )  8/3 
k (C)  = 1 - ~  " (22)4/3" k2/3(A) '  

and the overall cost is bounded by 

[108(22)1/6(1155~ 2 / 54 ~ 1/3 ] 
\ 54 ] + 4620 \ 1 1 5 5 ]  221/6 k l / 1 2 ( A ) F ¢ ( n )  = E k l / 1 2 ( A ) F ¢ ( n ) ,  (27) 

where 
[ (1155~ 2 ( 54 ) 1/3 ] 

E = 108 \ 54 ] + 4 6 2 0 1 - ~  221/6 = 400,993.268.. .  

(compare(22)). Therefore, the recursive method is superior to the nonrecursive method only 

if k ( A )  is enourmosly large: k ( A )  > ( E / ( 1 2 v / ~ ) )  6. We also compare (27) and (24) and conclude 
tha t  the recursive method improves the unpreconditioned CG method only for extremely large 
k (A) ,  k ( A )  > ( E l 8 )  12/5. 
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