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The physics of the ““dark energy” that drives the current cosmological acceleration remains mysterious,
and the dark sector may involve new light dynamical fields. If these light scalars couple to matter, a
screening mechanism must prevent them from mediating an unacceptably strong fifth force locally. Here
we consider a concrete example: the chameleon mechanism. We show that the same coupling between the
chameleon field and matter employed by the screening mechanism also has catastrophic consequences for
the chameleon during the Universe’s first minutes. The chameleon couples to the trace of the stress-energy
tensor, which is temporarily nonzero in a radiation-dominated universe whenever a particle species
becomes nonrelativistic. These “kicks” impart a significant velocity to the chameleon field, causing its
effective mass to vary nonadiabatically and resulting in the copious production of quantum fluctuations.
Dissipative effects strongly modify the background evolution of the chameleon field, invalidating all
previous classical treatments of chameleon cosmology. Moreover, the resulting fluctuations have extre-
mely high characteristic energies, which casts serious doubt on the validity of the effective theory.
Our results demonstrate that quantum particle production can profoundly affect scalar-tensor gravity, a
possibility not previously considered. Working in this new context, we also develop the theory and

numerics of particle production in the regime of strong dissipation.
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Introduction.—Understanding cosmic acceleration [1,2]
is one of the deepest open problems in cosmology. Several
theories postulate that the dark energy responsible for this
acceleration is sourced by a dynamical scalar field [3—6].
Such theories face a severe challenge: a light scalar field
will generally mediate a long-range fifth force that is sub-
ject to stringent experimental bounds [7]. If the scalar field
couples to matter, then the theory must include a “‘screen-
ing mechanism” that prevents the scalar field from medi-
ating a long-range force in local environments [8].

Here we consider the chameleon [9,10], a well-studied
screening mechanism that is essential to f(R) gravity
[11-15]. We show that the same coupling between the
chameleon scalar field and matter that enables the screen-
ing mechanism nearly always leads to a breakdown of
calculability just prior to big bang nucleosynthesis
(BBN). If this coupling is not too weak, quantum fluctua-
tions of the chameleon field inevitably become excited
when particles become nonrelativistic. Weakly coupled
chameleons require finely-tuned initial conditions to avoid
the same fate. The produced fluctuations contain a signifi-
cant fraction of the chameleon’s energy, showing that the
field cannot generically be treated as a homogeneous clas-
sical condensate, as was assumed in all previous works
[16,17]. Moreover, the characteristic momenta of fluctua-
tions can exceed the Planck scale for typical parameters,
casting serious doubts on the validity of effective field
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theory (EFT). This trans-Planckian regime includes all
strongly coupled chameleons [18,19], which are the mod-
els relevant for direct detection experiments [20-23].

In chameleon gravity, the spacetime metric § ,,, that gov-
erns geodesic motion differs from the metric g,, in the
Einstein-Hilbert action, g, = exp[28¢/Mplg,,, where
¢ is the chameleon field, 8 is a dimensionless coupling,
and Mp is the reduced Planck mass. The Lagrangian is

_Mp gy -
_TR[g,uu]_E(ad)) _V(¢)+£mat[g/¢w 'wbm ] (1)

The chameleon potential V(¢) has to have a particular form
for the screening mechanism to work successfully. A typi-
cal example of this class of potentials is

V(¢) = M*expl(M/¢)"] n>0. 2

We assume 8 = O(1072) so that the screening mechanism
is relevant. Evading fifth-force constraints requires M =<
0.01 eV [19], and if M =~ 0.001 eV, the chameleon drives
late-time cosmic acceleration [16]. E6t-Wash experiments
also constrain n and S [24,25].

In a Friedmann-Roberston-Walker
(g dxtdx” = —df* + a*(r)dx?],

é +3Hp —a?Vip = —[V'(¢) + Blp — 3P)/Mp],

spacetime

3)
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where ¢ = 9,¢, H = a/a, and p and P are the “Einstein-
frame” energy density and pressure, which are related
to the observed (Jordan-frame) energy density p; and
pressure P; by p/p;=P/P;=exp[4B8¢/Mp]. The ¢ dy-
namics are governed by an effective potential, Ve = V +
B¢ (p — 3P)/Mp,, whose minimum, ¢,;,, depends on p
and P. The chameleon mass, mj = V/i(¢pmin), increases
with p. In high density regions, ¢ is heavy and cannot
mediate a long-range force [9,10].

The potential V(¢) was designed to provide this screen-
ing mechanism and does not originate from fundamental
physics. While there have been attempts to realize Egs. (1)
and (2) in string theory [26,27], chameleon gravity is
usually treated as a low-energy EFT. Quantum effects
were ignored until recently [28]. We consider a very differ-
ent kind of quantum effect, related to particle production in
a time-dependent background.

Kicks.—We assume that the Universe became radiation
dominated at a high temperature (7 = TeV), and at this
time, ¢ was a classical, homogeneous condensate with
M < ¢; = Mp [16]. (If ¢; << M, then the force V' pushes
¢ to larger values.) Prior to BBN, ¢,,;, = M, but Hubble
friction prevents the chameleon from rolling toward ¢,
while (p — 3P) < p. This is problematic because ¢, <
My, today, and variations in ¢ can be interpreted as varia-
tions in particle masses. To avoid spoiling the success of
BBN, the chameleon must reach ¢ < 0.1Mp,/ 8 before the
temperature cools to a few MeV [16]. Since ¢; is set by
unknown physics in the very early Universe, some mecha-
nism to displace ¢ prior to BBN is usually required to
satisfy this constraint.

Fortunately, there is an effect that will “kick” ¢ to
smaller values [16,29,30]. The quantity 3 = (p — 3P)/p
becomes temporarily nonzero when the radiation tempe-
rature drops below the mass of a species X in thermal
equilibrium; at higher temperatures 3 is small because
Py = px/3 and at lower temperatures it is small because
pyx is Boltzmann suppressed. At this time, the last term in
Eq. (3) overcomes the Hubble friction, and ¢ rolls toward
¢ min- In Fig. 1 we include all standard model (SM) parti-
cles and plot 3 as a function of the Jordan-frame tempera-
ture 7;; the contributions from individual particles merge
into four distinct kicks [31,32].
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FIG. 1 (color online). The kick function X, = (p — 3P)/p vs
Jordan-frame temperature. We account for all SM particles. The
discontinuity at 7; = 170 MeV corresponds to the QCD phase
transition.

We solved Eq. (3) numerically for a homogeneous cha-
meleon with a wide range of initial values. We find that the
kicks generically drive ¢ to ¢ < M, where V(¢) becomes
important. At this moment, the chameleon’s velocity ¢
is much larger than M?, the scale that controls V().
This huge velocity causes the chameleon mass to vary
rapidly, and then particle production spoils the classical
approximation.

Chameleon velocities.—Before discussing particle pro-
duction, we must understand why the kicks drive ¢ toward
the potential barrier at ¢ < M with a large velocity. If
@i > dmin> then we can neglect the V/(¢) term in Eq. (3).
Since V(¢) < p and 3 < 1, the homogeneous dynamics
are well approximated by

¢" + ¢'[1 = (¢')/6] = =3[1 — (¢"/6]B2(T), (4

where ¢ = ¢/Mp, ¢'=0,p, and p =In(a/a;). The
Jordan-frame temperature (p; * T%) also depends on ¢:

* T i 1/3 — —
T, = [g'S( J, )] T, ePle=9er, (5)
g+s(T))

where g.¢(T;) is the entropy density divided by
(27%/45)T3, and T ; and ¢; are initial conditions.

These equations admit a novel surfing solution, charac-
terized by a constant Jordan-frame temperature,

ei(p) = —B ' & T, =T ep)] =const. (6)

This ansatz solves Eq. (4) if 2(T,) = 1/(3B%). If only
the SM contributes to 2, then surfing solutions exist for
>1.82. Numerically solving Eq. (3) with 8 > 1.82 con-
firms that the surfing solution is an attractor if P’ < p
prior to the kicks. Previous studies [16,17] missed the
surfing solution because they neglected the ¢ dependence

in Eq. (5).
Chameleons with 8 > 1.82 can “‘surf” the kick function
from an arbitrarily large initial condition, ¢’(p) = — B!

until @ = ¢,/ Mp;, where V' becomes important and
Eq. (4) breaks down. If 8 = 3.07, then T, > 61 GeV and
the chameleon quickly settles into the surfing solution. If
1.82 < B < 3.06, the chameleon will not surf the first kick,
but it can surf a subsequent kick if earlier kicks leave
¢ > ¢nin. Consequently, any chameleon with 8> 1.82
will reach ¢, regardless of ¢;.

If the chameleon cannot surf, then the kicks displace ¢
by a finite amount [32]. However, any chameleon with
B> 0.42 will reach ¢, during the last kick if ¢ <
(0.1/B) prior to that kick, as required by BBN.
Chameleons with 8 < 0.42 can avoid colliding with the
potential wall, but only if their initial condition is finely
tuned so that all the kicks from particles with masses
>MeV leave 0.568 < ¢ < 0.1/8. For f(R) gravity, B =
1/~/6, and impact can only be avoided if 0.23 < ¢ < (.24
prior to BBN.
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Having established that the kicks almost always take
the chameleon to ¢,;,, we now consider the chameleon’s
velocity when it impacts its bare potential: ¢ =~
—0.6g)2¢/[3 — 0.5(¢")2]"/2T2. Typical velocities are
controlled by T, evaluated when ¢ =¢;,. Quanti-
tatively, 7, = 0.5 MeV at this time and |¢’| > 0.02, unless
a kick deposits ¢ exactly at ¢ i, s0 |p]'/2>0.07MeV >
M in all but a few finely-tuned cases. Moreover, || is
usually much larger; a surfing chameleon with 8 = 3.07
has |$|'/2 > 63 GeV at impact.

FParticle production.—When the chameleon reaches
D min With || > M2, it climbs up the steep side of its
effective potential until its kinetic energy is exhausted, and
then it rolls back to larger values. This “reflection” occurs
on a very short time scale, so we can neglect the expansion
of the Universe. The production of quantum fluctuations
8¢(1, %) = ¢(t, %) — (1) is governed by their effective
mass: mfb(t)EVé’ff[d_)(t)]zV”[i(t)] when ¢ < M. Near
the moment of reflection, m(zﬁ changes significantly over

a tiny time scale At~ V" /(V" ¢,,), where ¢, is the cha-
meleon’s velocity when it starts its climb (¢ =~ M). Such
nonadiabatic variation will excite modes with k=< (A7)~ ~
|y /M [33]. The perturbation energy per logarithmic
interval in k is E;, = kK’w;n;/(27*) where n;, is the occu-
pation number. Since |¢,,| > M2, these modes carry a
tremendous amount of energy; unless n;, < 1, E; greatly
exceeds the energy of the chameleon field prior to the
reflection. Therefore, we expect the rapid turnaround of
¢ to generate fluctuations with very high energies that
strongly backreact on the background ¢ even when their
occupation numbers are tiny.

To make these heuristic claims quantitative, we express
O ¢ in terms of creation and annihilation operators,

- &k i gt —if
00(1.%) = [ 55 ladu(0e™ + algi0e L (1)
If we neglect nonlinear d ¢ interactions while keeping the
leading-order backreaction of 8¢ on ¢, Eq. (3) implies

B+ V(B + JVEBGED =0 ®)
Pk
2 2
0ot = [ T (1040 - wk) ©)
bt widr =0 o) =+ Vel (10

Equation (8) is the spatial average of the second-order
Taylor expansion of Eq. (3) around ¢ = ¢. Including the
(8?) term ensures that production of fluctuations drains
energy from ¢: 4p=—4(5p). Equation (9) has been regu-
lated as in previous works [34,35], and kR is the scale on
which we coarse-grain the chameleon; modes with k < kg
are absorbed into the background ¢(7). Note that we omit

mode-mode couplings for fluctuations with k > kg,
whereas the coarse-grained field obeys the nonlinear
Eq. (8). Equation (10) is solved with vacuum initial condi-

tions, ¢, = e * J o ) e (7), prior to particle
production.

We solved the closed system (8)-(10) numerically,
allowing the classical trajectory ¢(7) to reflect off the
potential barrier near ¢ = 0. We take V() to be given
by Eq. (2) with M = 0.001 eV and 2 = n = 10; the matter
coupling is irrelevant because we are only concerned with
small field displacements (A¢ < M) [32]. We start the
evolution at ¢ = 2M and we take ¢, as determined by
the kick dynamics discussed earlier. We integrate modes
with kg < k < kp,a Where ko > (Af)~! (the short time
scale of the reflection). We take k;g < 0.05(A#)~! to cap-
ture the evolution of the modes that are most copiously
produced while minimizing the errors introduced by
neglecting the mode-mode couplings.

Figure 2 shows the time evolution of the total energy in
fluctuations (Epey); as ¢ climbs its potential, Eye, grows
from zero to become an O(1) fraction of the background
energy even before ¢ turns around at ¢ = 0. This energy
transfer clearly indicates that one cannot treat ¢ as a
homogeneous, classical field. Shortly after the reflection,
interactions become strong, and Egs. (8)—(10) break down.
Naively extrapolating our results into this (uncalculable)
regime, we see that E ., eventually reaches a steady state.
The asymptotic value of Ep.; depends on ki, precisely
because nonlinearities are important and kp sets the lon-
gest wavelength mode that is treated linearly. The choice
of kg does not affect our claim about the breakdown of the
classical approximation, which happens before the reflec-
tion point. Any attempt to follow the chameleon through
its reflection off the potential wall must provide an account
of particle production in the regime of strong dissipation
and strong nonlinearity.

Figure 3 shows the energy spectra of produced particles
for different values of ¢,,. As expected, the perturbation
energy spectrum peaks at a very high wave number (k)
that depends on the chameleon’s initial velocity. Although
n; < 1, the energy in perturbations is substantial because
their typical momenta are large; even for modest ¢,
most of the energy in fluctuations is in modes with

Epert/Etom

t [10-17 GeV-1]

FIG. 2 (color online). Time evolution of the total energy in
fluctuations divided by the total energy in the chameleon field
forn=2, ¢b,; = 100 GeV? and kg = 10'5 GeV; ¢ turns around
when ¢t = 0.
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FIG. 3. Energy spectra for initial chameleon velocities FIG. 4 (color online). The peak wave number in the perturba-

QS u/GeV? = —20 (solid), —200 (long-dashed), —2000 (short-
dashed), and —20000 (dotted). The energy per logarithmic
interval in k (E}) is shown as a fraction of the total chameleon
energy Eu = ¢ /2. In all cases, kir/kyc = 0.02 and n = 2.

k= kp = 10! GeV. Changing kg does not affect the
shape of the spectra, which indicates that nonlinear inter-
actions do not change which modes are excited. Rather, kp

is determined by the timing of the reflection.

Analytic method—We now derive an analytic model of
the reflection that gives an expression for k. Writing ¢
using time dependent Bogoliubov coefficients gives

ak(t) fif’ wi(t)dr' ﬁk(t) +if‘w (t"dr'
- + Pl e gy
P = et N (1

where |a|> — | B> = 1 and n,(¢) equals | 8,(1)|*>. Rapid
changes in w; excite perturbations because [33]

B, =2k 2 [t o (12)
2(1)k
Since n; < 1 in our case, |8;| < ||, and we may inte-
grate Eq. (12) with @; = 1 to obtain an approximation for
Bi(t) [36]. Using this solution, along with (11), we com-
pute {8¢?) and write Eq. (8) in a closed form:

b + Vig(d) = V" (1)] fo VITEWIGK (@ — 1)dr,

where K(x) = Cosinelntegral [2k;zx]/(167r%). The right-
hand side represents dissipation from particle production
and matches the 1-loop dissipation term computed in
Ref. [37] using a different method.

The magnitude of the dissipation term increases sharply
as ¢ decreases, so we may restrict our analysis to a short
time just before ¢ turns around. In that regime, we can
integrate by parts to approximate Eq. (8) as ¢ + V() +
k()V"($)V"(¢) = 0, where (t) depends logarithmically
on krt with 0.02 < « =< 0.05 [32]. Neglecting the slow
evolution of «, particle production effectively changes the
chameleon potential to V() + Vp(d) with V(o) =
(k/2)[V"(¢)]?. For ¢ < M, V() > V(¢); the chame-
leon dynamics are dominated by quantum effects. Indeed,
the numerical solutions confirm that the turnaround point
¢ = ¢, has Vp(¢,,) = ¢3,/2 with k = 0.03. Therefore,

we should use Vj(¢) when computing kp ~ (A~ ! =

V()

tion spectrum as a function of the chameleon initial velocity ¢,
for n = 2. The points show the numerical results. The dashed
line is Eq. (13), and the solid line is Eq. (13) multiplied by 0.7.

N nldul [ﬂ]"“ ~ ”bn|d’M|lnm|: b

Koy = ; , 13
T oM Loy, 2M n4KM4] (13)

where b, is an order-unity constant; this final approxima-
tion is accurate for 107° < |¢,,|/GeV? < 10°. Figure 4
shows that this analytic result successfully matches the
numerics for n = 2, up to a numerical factor that is close
to unity. This model is similarly successful for other values
of n = 10, and increasing n changes kp, by less than 25%
over the relevant |¢,,| range.

In Fig. 5 we use this model to show how k depends
on B and ¢;. Nearly all chameleon models have ky >
10'°GeV, and ky, = My for B = 4, casting serious doubt
on the validity of the EFT (1). (This is the regime relevant
for all direct detection experiments.) Although the results
shown in Fig. 5 were derived assuming an exponential
potential, our analytic model predicts that any chameleon
potential V(¢p/M) with M < 0.01 eV will give similar
results. Furthermore, the values of kp, in Fig. 5 may be
underestimated, because we only included contributions
from SM particles in 2. Including additional particles,
the QCD trace anomaly [38,39], interactions during the
QCD phase transition [40], or a coupling between the

5 T T T 1 20
Mp; w— L1418
4r 1r 116
10" Gev 414 (“5
3r k4 12 %
Q 0 «%
2 {010
b 8 b'E
o
1 GeV : 6~
BBN excluded 4
0 . 2
0 0.2 0.4 0.6 0.8 1
¢/ Mpy

FIG. 5. Peak wave number (k) in the perturbation energy
spectrum, as a function of initial position (¢;) and coupling
constant () for n = 2. The white region shows values of ¢;
sufficiently large that ¢ > M after all four kicks. The region
marked “BBN excluded” is forbidden because ¢ > 0.1Mp,;/8
prior to the last kick, which spoils the success of BBN.
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chameleon and a primordial magnetic field [17] would
increase || and ky.

Conclusions.—Cosmological dynamics in chameleon
theories generically lead to a catastrophic breakdown of
calculability just prior to BBN due to the same matter
coupling that was introduced to suppress unacceptable fifth
forces. The theory can evade strong particle production
effects only for weak couplings and highly fine-tuned
initial conditions, so significant advances in chameleon
theory and phenomenology are required to give the theory
a solid footing. This chameleon catastrophe is a conse-
quence of a great mystery of modern physics: the extreme
hierarchy between the masses of SM particles and the
energy scale associated with cosmic acceleration. We
have shown how this hierarchy leads to violations of adia-
baticity and the quantum production of particles. Other
modified gravity theories that include scalars coupled to
the trace of the stress tensor may face similar difficulties,
if the effective mass of the scalar field is sensitive to small
changes in the field’s value.
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