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Magnetic skyrmions are chiral spin structures recently observed at room temperature in multilayer films.
Their topological stability will enable high scalability in confined geometries—a sought-after attribute
for device applications. Despite numerous theoretical studies examining sub-100-nm Néel skyrmions
in nanostructures, in practice their ambient stability and evolution with confinement and their mag-
netic parameters remain to be established. Here we present the zero-field stabilization of sub-100-nm
room-temperature Néel-textured skyrmions confined in Ir/Fe(x)/Co(y)/Pt nanodots over a wide range of
magnetic and geometric parameters. The zero-field skyrmion size, here as small as approximately 50 nm,
can be tailored by a factor of 4 with variation of dot size and magnetic interactions. Crucially, skyrmions
with differing thermodynamic stability exhibit an unexpected dichotomy in confinement phenomenologies.
These results establish skyrmion phenomenology in multilayer nanostructures, and prompt the synergistic
use of magnetic and geometric parameters to achieve desired properties in devices.

DOI: 10.1103/PhysRevApplied.11.024064

I. INTRODUCTION

The topologically protected spin structure of skyrmions
manifests itself in their emergent behavior as mag-
netic quasiparticles [1–3], with individual addressabil-
ity, nucleation, and dynamics [4,5]. The discovery of
room-temperature (RT) skyrmions in multilayer films
[6–11]—material platforms of demonstrable technolog-
ical relevance—has led to an explosion of interest in
investigating their behavior in device-relevant configura-
tions [12,13]. In particular, device proposals built upon
their mobility in wires and manipulation in dots [5,14,15].
In the latter case, the topological stability of skyrmions
[16] promises dot devices with nanometer scalability [4],
ease of detection [4,17,18], and energy-efficient manipu-
lation [4,15,19–21]. In particular, they could be used in
magnetic-tunnel-junction configurations, with applications
in memory [19,20], logic [13], and oscillators [14,22,23].

In this light, numerous theoretical studies have exam-
ined the formation and manipulation of single Néel
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skyrmions in ultrathin nanodots, and their scalability with
geometric and magnetic parameters [5,24–28]. Mean-
while, experimental efforts on magnetic nanostructures
have predominantly focused on Bloch skyrmions in low-
temperature helimagnets [29,30], and chiral skyrmion
bubbles (larger than 150 nm), the latter stabilized by
long-range dipolar interactions [7,8,31,32]. However, tech-
nologically relevant Néel skyrmions, expected to pos-
sess sub-100-nm sizes in multilayers, have thus far been
observed only at finite external magnetic fields [6,10], and
are yet to exhibit confinement effects. Crucially, the ambi-
ent stabilization of confined skyrmions, the role of confine-
ment in determining skyrmion properties, and its interplay
with magnetic parameters all remain to be established.

Here we report the zero-field (ZF) stabilization of
sub-100-nm RT skyrmions confined in nanodots of
Ir/Fe(x)/Co(y)/Pt multilayer films (nominal layer thick-
ness in angstroms in parentheses). High-resolution mag-
netic force microscopy (MFM) and micromagnetic sim-
ulations establish their existence over a wide range of
magnetic and geometric parameters in our patterned dots.
The ZF skyrmion size can be smoothly scaled by a fac-
tor of 4, down to as small as approximately 50 nm,
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with variation of confinement and magnetic interactions.
Crucially, confined skyrmions of differing thermodynamic
stability unexpectedly exhibit contrasting phenomenolo-
gies. While metastable skyrmions conform to theoreti-
cal predictions, thermodynamically stable skyrmions form
multiplets, with markedly different scaling characteristics
with confinement. Our results prompt a revision of theoret-
ical efforts on magnetic and geometric tailoring of confined
skyrmions, and provide the cornerstone for engineering
their properties for device applications.

II. METHODS

A. Film deposition

Multilayer stacks consisting of Ta(30)/Pt(100)/[Ir(10)/
Fe(x)/Co(y)/Pt(10)]20/Pt(20) (nominal layer thicknesses
in angstroms in parentheses) are deposited on thermally
oxidized 100-mm Si wafers by dc magnetron sputtering
at RT with use of a ChironTM UHV system manufac-
tured by Bestec GmbH. Five Fe(x)/Co(y) compositions are
investigated here—Fe(2)/Co(6), Fe(2)/Co(5), Fe(3)/Co(6),
Fe(4)/Co(6), and Fe(5)/Co(5), described henceforth by
their Fe(x)/Co(y) composition—which enable the mod-
ulation of magnetic parameters (see Sec. S1 within the
Supplemental Material [33]).

B. Dot fabrication

Negative-resist Ma-N 2403 is spin coated on the multi-
layer films to form an approximately 300-nm-thick over-
layer. Dots of diameter (w) 100–3000 nm are defined with
use of an ElionixTM electron-beam-lithography tool. The
patterns are transferred onto the multilayer films with use
of an IntlvacTM ion-beam-etching system, with residual
resist lifted off in an ultrasonic bath. Feature topogra-
phy is imaged with use of a Veeco DimensionTM 3100
scanning probe microscope, and a JEOLTM JSM-7401
field-emission SEM. Cross-section SEM images [see, e.g.,
Fig. 1(a)] are obtained by our tilting the sample at 87◦, with
the sample mounted on a vertical holder.

Structural characterization of the dots shows an upright
profile with relatively constant diameter vertically through
the stacks for w = 200–500 nm (see Sec. S2 within the
Supplemental Material [33]). For dots with w ≤ 150 nm,
a resist overlayer, due to incomplete lift-off, is observed
in numerous cases [see, e.g., Fig. 4(b), i, w = 150 nm].
The resulting low yield for w ≤ 150 nm precludes a
direct comparison of magnetic phases across samples.
While AFM images do show some skirting effects at
the bottom boundary, the magnetic layers at the taper
are too thin to contribute a detectable signal in MFM
images.

C. MFM measurements

MFM imaging is performed using a Veeco Dimen-
sion 3100 scanning probe microscope, with Co-alloy-
coated SSS-MFMRTM tips. The sharp tip profile (diameter
approximately 30 nm), its ultralow moment (approxi-
mately 80 emu/cm3), and lift heights of 20–30 nm used
during scanning provide high-resolution MFM images,
while introducing minimal stray-field perturbations. Our
earlier work established MFM as a reliable tool for imag-
ing sub-100-nm skyrmions in multilayer film, producing
dm

sk trends in excellent agreement with those obtained with
x-ray-microscopy techniques [10]. While the lowest dm

sk
values represent an overestimate due to implicit convolu-
tion with the approximately 30-nm MFM probe, this effect
can be straightforwardly quantified [10,34]. In this work,
the dots are imaged after ex situ negative out-of-plane (OP)
saturation, followed by the application of in situ OP fields
ranging from 0 to 200 mT. The magnetization orienta-
tion of the skyrmion core is twofold degenerate—its MFM
signal is determined by the relative directions of the tip
and sample saturation. Repeated MFM scans are acquired
to ensure consistency and reproducibility of results.
Twelve dots are imaged for each w and Fe/Co composi-
tion to mitigate variability in deposition and fabrication
processes.

dsk

LSSKUM

500 nm400 nm300 nm200 nm100 nm(a)

(b)

FIG. 1. Confined magnetic
states in nanodots. (a) Scanning-
electron-microscope image (scale
bar 100 nm) of an [Ir/Fe/Co/Pt]20-
dot array with diameter w ranging
from 100 to 500 nm. (b) Spin
textures corresponding to the
three distinct states expected
in multilayer nanodots: uni-
form magnetization (UM), Néel
skyrmion (SK; size dsk), and
labyrinthine stripes (LS).
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D. Micromagnetic simulations

Micromagnetic simulations are performed with MUMAX3-
based simulation software [35]. The dot is defined with
a cylindrical geometry, in line with experimentally fab-
ricated structures. The mesh cell size used has lateral
dimensions of (2–4) × (2–4) nm2, while the vertical size
tFM is set to match the Fe/Co magnetic layer thickness
of each sample [e.g., tFM = 0.8 nm for Fe(2)/Co(6)]. The
adjacent magnetic layers (Fe and Co) are simulated as a
single cell to mimic the experimentally observed persis-
tence of skyrmion textures across both layers [10]. An
approximately 2-nm spacer layer is introduced between
magnetic layers (for Ir and Pt), with the spacer thickness
approximated to be the nearest multiple of tFM. The results
shown correspond to simulations of 20 stack repeats, con-
sistent with the experimental multilayer film. Single-stack
simulations are performed for illustrative comparison.

The magnetic parameters used are consistent with our
film-level results on [Ir/Co(x)/Fe(y)/Pt]20 stacks [10] (see
Sec. S1 within the Supplemental Material [33]), and the
Gilbert damping parameter α is set to 0.1. A single (or
multiple) skyrmion configuration is initialized in the dot,
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FIG. 2. Confinement effects in submicron dots. (a)–(d) MFM
images (scale bar 100 nm) of dots with w = 500 nm after
negative saturation for (a),(c) Fe(2)/Co(6) stacks and (b),(d)
Fe(4)/Co(6) stacks. At H = 0, (a),(b) show LS states. At H �
0.6 HS (out-of-plane saturation field) (c),(d) show SK states
in isolated (c) and lattice (d) configurations. (e),(f) Measured
skyrmion density nsk as a function of H for dots with differing w
for (e) Fe(2)/Co(6) and (f) Fe(4)/Co(6). Shaded regions represent
error bars.

and the magnetization is allowed to relax over a timescale
of approximately 2–10 ns to simulate the ZF configuration
for each set of parameters (see Sec. S4 within the Supple-
mental Material [33]). MFM images are generated from
the two-dimensional magnetization profile with use of the
MUMAX3 built-in MFM function [35], with a tip height of
20 nm and a dipole size of 30 nm.

III. CONFINED STATES IN MULTILAYERS

The ground-state configuration of a magnetic multi-
layer nanostructure is governed by the collective influ-
ence of magnetic interactions. The exchange interaction,
characterized by the stiffness (A), aligns neighboring spins
parallel and favors a uniformly magnetized (UM) state
[Fig. 1(b)], with orientation determined by the effec-
tive (OP) anisotropy, Keff. In contrast, the interfacial
Dzyaloshinskii-Moriya interaction (D) prefers a winding
spin arrangement, leading to a labyrinthine-stripe (LS)
state [Fig. 1(b)] [36]. The competition between D, A, and
Keff can form Néel-textured skyrmions [SKs; Fig. 1(b)]
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FIG. 3. Simulated evolution of ZF magnetic states.
Micromagnetic simulations of the ZF phase diagram for
[Ir/Fe(x)/Co(y)/Pt]20 dots. (a) The magnetic textures obtained
are identified as UM (green), SK (yellow), or LS (blue). Phase
diagrams with parameters for Fe(2)/Co(6) for (b) 20 repeats and
(c) a single layer, with D and w varied over a range of likely
values. The SK state is expected over a broad, intermediate
set of parameters. (d) Expected evolution of magnetic states in
dots with w ranging from 50 to 600 nm across the five samples
[shown with increasing κ in Fig. 4(a); see Sec. S1 within the
Supplemental Material [33]]. A weighted-average method is
adopted to estimate the expected magnetic state for each w (see
Sec. S4 within the Supplemental Material [33]).
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FIG. 4. Imaging confined ZF skyrmions. (a) Variation of κ and D/A across the samples studied. (b) MFM images at ZF (scale bar 100
nm) showing the magnetic states in dots with w ranging from 150–500 nm for Fe(2)/Co(6), Fe(3)/Co(6), and Fe(5)/Co(5) respectively.
The images, in several cases, show ZF skyrmions at intermediate w, with UM and LS phases for smaller and larger w respectively. (c)
Empirical ZF skyrmion nucleation probability, Psk (averaged over 12 nominally identical dots), as a function of w for all five samples.
The shaded blue region (w < 200 nm) indicates a low yield from the patterning process. Both single (green bars) and multiple (red
bars) skyrmion configurations are observed.

[4], thermodynamically stable entities for material parame-
ter κ > 1, where κ = πD/4

√
AKeff [1,3,10]. Moreover, the

presence of interlayer dipolar coupling in multilayer stacks
[28,37,38] and long-range intralayer dipolar interactions
[8] can also play a role—the latter being key to stabi-
lizing larger (>200 nm) skyrmion bubbles [7–9,28,32].
Notably, confined geometries can shape the ground state
[8,24,29,30,37,39], potentially favoring ZF stabilization of
skyrmions [5,24].

The stability and size of confined skyrmions would be
markedly influenced by magnetic interactions and geomet-
ric parameters [24,28,37]. Multilayer [Ir(10)/Fe(x)/Co(y)/
Pt(10)]20 stacks (layer thicknesses in angstroms in paren-
theses), wherein magnetic interactions can be tailored
by the Fe(x)/Co(y) composition, are a suitable platform
for establishing confined Néel-textured skyrmion phe-
nomenology [34]. We investigate RT skyrmions in dots
(w = 100–3000 nm) patterned from these stacks [see, e.g.,
Fig. 1(a)]. On establishing consistency between magnetic
textures in dots with w ≥ 1000 nm and film-level results
(see Sec. S3 within the Supplemental Material [33]), we
examine the effect of confinement as w is reduced to 500
nm. For the representative sample Fe(2)/Co(6), we find a
LS state at ZF [Fig. 2(a)], which transforms to sub-100-
nm skyrmions at finite OP fields [H ; Fig. 2(c)]. Notably,
the skyrmion density, nsk, is consistently higher in 500-
nm dots, by a factor of 3, as compared with larger dots

and films [Fig. 2(e)], and this is attributed to the reduction
in magnetostatic energy with smaller w [7,8]. Meanwhile,
for dots with lower Keff [Figs. 2(b), 2(d), and 2(f)], nsk(H)

is consistent across w, and is approximately 5–10 times
greater than for Fe(2)/Co(6). Indeed, nsk is known to
increase with reducing Keff as the energy barrier for domain
nucleation is lowered. Importantly, the constancy of nsk
with w for Fe(4)/Co(6)—which already hosts a dense
skyrmion lattice—offers an orthogonal tuning parameter.
This suggests that use of the synergy between magnetic
tuning and confinement is a promising route for tailoring
ZF skyrmions.

IV. CONFINED ZERO-FIELD SKYRMIONS

Next we perform a comprehensive set of multilayer
micromagnetic simulations to map the evolution of mag-
netic states for dots with w < 500 nm. The relaxed mag-
netic state at ZF, following the introduction of a skyrmion,
is examined over a range of parameters to determine the
magnetic phase diagram (Fig. 3; see Sec. S4 within the
Supplemental Material [33]) [5,7]. While the LS phase
dominates at large w, the reduction in magnetostatic energy
for intermediate w shrinks the stable domain wall size,
and instead favors the formation of a SK phase [24]. As
w is reduced further (below approximately 100 nm), the
exchange energy eventually dominates, leading to the UM

024064-4
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FIG. 5. Simulated skyrmion size
variation. (a) ds

sk trend for a single
skyrmion initialized and relaxed
in a dot, with variation of w across
samples. The inset shows magne-
tization (color scale, mz; arrows,
IP texture) of a Néel skyrmion in
the dot. (b) Modulation of ds

sk/w
[values from (a)] with D/A across
samples. (c),(d) Simulated initial-
ization of different numbers (Ni) of
skyrmions in a dot with w = 250
nm for Fe(2)/Co(6), Fe(3)/Co(6),
and Fe(5)/Co(5) of increasing κ .
(c) Simulated MFM images for
three Ni values, showing differing
numbers of stabilized skyrmions.
(d) Variation of ds

sk with Ni (open
symbols) for Ni > 1, with qualita-
tively different trends in compar-
ison with Ni = 1. Solid symbols
show measured dm

sk values from
experiments.

phase. The interplay between confinement and magnetic
parameters determines the window for SK stability in dots,
which is explored here.

First, a comparison of the phase diagrams for the
Fe(2)/Co(6) multilayer [Fig. 3(b)] and the corresponding
single layer [Fig. 3(c)] shows the SK phase persisting
over a much larger w range in the multilayer. The addi-
tional presence of interlayer dipolar coupling, introduced
by multilayer stacking, is key to this increased SK stability
[28,38]. Next, an inspection of the confined magnetic
states across samples [Fig. 3(d), optimal parameters]
suggests that ZF skyrmions may be observed for w �
2.5 LD (LD is the film-level domain periodicity), and
the stability in smaller dots could be enhanced with
increasing κ .

We now turn to MFM images of ZF magnetic textures
for dots with w < 500 nm, shown for three illustrative
samples in Fig. 4(b) (corresponding data for 2/5 and 4/6
can be found in Sec. S3 within the Supplemental Mate-
rial [33]). Consistent with simulations [Fig. 3(d)], reducing
w [from 500 to 150 nm: Fig. 4(b), right to left] results in
a gradual transition from the LS phase to the SK phase,
and eventually to the UM phase. Crucially, sub-100-nm
skyrmions are stabilized at ZF, prima facie by confine-
ment effects, across all Ir/Fe(x)/Co(y)/Pt compositions. In
some cases, however, nominally identical dots are found

to exhibit different ZF states, likely due to the granularity
of sputtered films [32,40,41], or fabrication-process vari-
ations (see Sec. II and Sec. S2 within the Supplemental
Material [33]). This variability is mitigated by our deter-
mining the statistically averaged behavior of 12 dots for
each w across samples. The evolution of ZF skyrmion-state
probability, Psk, is examined here.

Histogram plots of skyrmion nucleation probability,
Psk(w) [Fig. 4(c), evidence a stable SK phase over a range
of magnetic [Fig. 4(a)] and geometric parameters. In line
with simulations (Fig. 3), the increased skyrmion stabil-
ity in multilayers underscores the vital role of interlayer
dipolar interactions. Next, while the peak Psk appears to
shift to lower w with κ for κ � 1, this trend, expected from
simulations, does not persist for κ > 1. For w < 200 nm
[Fig. 4(c), shaded region], the low yield in our patterning
process precludes a statistically meaningful comparison
across κ (see Sec. II).

More surprising is the persistence of the SK phase for
κ > 1 at larger w, particularly the observation of multi-
skyrmion configurations [see, e.g., Fig. 4(b), i, 300 nm;
Fig. 4(c), red]. While thermodynamically stable skyrmions
(κ > 1) form ordered lattices at finite fields [1,2,4,10,29],
the presence of multiskyrmion configurations suggests
a strong interplay of magnetic and confinement effects
not considered in previous simulations. Indeed, when
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simulations are repeated with the initialized skyrmion
number, Ni > 1 [Fig. 5(c); see Sec. S4 within the Sup-
plemental Material [33] ] [7,39], multiskyrmion states are
found for dots with κ > 1 [Fig. 5(c), i]. In contrast, mul-
tiskyrmion states are consistently absent in dots with κ <

1 both in experiments [Fig. 4(b), iii] and in simulations
[Fig. 5(c), iii], and only single skyrmions are formed
across w.

V. VARIATION OF SKYRMION SIZE

A visible modulation in the experimentally measured
skyrmion size, dm

sk across magnetic (vertical) and geo-
metric (horizontal) parameters is seen in Fig. 4(b). For
comparison, Fig. 5(a) summarizes the simulated ds

sk trends
for Ni = 1, showing a near-identical w dependence across
samples. This corresponds to a weak dependence of the
normalized size ds

sk/w on magnetic parameters [e.g., D/A;
Fig. 5(b)], consistent with recent multilayer simulations by
other groups [28,37]. However, such insensitivity of ds

sk
to magnetic parameters is in stark contrast with our MFM
data [Fig. 4(b)]. A reconciliation with measured dsk trends
would require our accounting for multiskyrmion stability
for κ � 1.

The relaxed magnetic configuration for Ni > 1 simula-
tions [Figs. 5(c) and 5(d) for w = 250 nm] shows a marked
transformation with variation of κ , in line with experi-
mental trends [Fig. 4(b)]. First, for κ < 1 [Fig. 5(c), iii],
only single skyrmions can be stabilized, and only with
Ni = 1; Ni > 1 simulations relax to a UM state. Next, for
κ ∼ 1 [Fig. 5(c), ii], Ni > 1 simulations relax to a sin-
gle skyrmion, albeit with reduced ds

sk. Finally, for κ > 1
[Fig. 5(c), i], multiskyrmion configurations are formed
for Ni > 1, while ds

sk reduces and plateaus for larger

Ni. Importantly, these ds
sk values [Fig. 5(d), open sym-

bols] agree qualitatively with measured dm
sk trends [Fig.

5(d); filled symbols] for appropriate Ni. We suggest that
the inclusion of magnetic granularity [40,41] and inter-
layer coupling [32,38] in a future simulation model could
improve the quantitative agreement of ds

sk with experimen-
tal values.

Figure 6(a) summarizes the measured ZF dm
sk trends,

showing an overall factor-of-4 reduction—from approxi-
mately 200 nm to approximately 50 nm. Notably, dm

sk is
monotonically reduced with increased confinement for all
samples, with up to 2.5 times reduction for Fe(2)/Co(6).
Similarly, for a given dot size, dm

sk varies by up to 2.5
times across samples. Most interesting in Fig. 6(a) is
the marked disparity in the w dependence of dm

sk. The
confinement gradient, defined as δdm

sk/δw, reduces by 4
times across samples. This observation, while incongruous
with Ni = 1 simulations for κ > 1 [Fig. 5(a)] [5,24,37],
is consistent with the behavior of multiskyrmion states
[Fig. 5(d)].

Finally we examine the evolution of dm
sk with D/A

[Fig. 6(b)] and H [Fig. 6(c)] in the context of exten-
sive predictions of these trends [5,6,24,27,28,37]. Figure
6(b) shows that the normalized size, dm

sk/w, reduces mono-
tonically with increasing D/A, with a sharp jump at
κ ∼ 1. The sudden reduction (up to 2 times) in dm

sk/w
across all w indicates a fundamental change in confined-
skyrmion behavior around κ � 1, consistent with recent
predictions [28]. Figure 6(c) shows the expected reduc-
tion in dm

sk with increasing H across samples. However,
the 20–30% reduction (for 0–30 mT) seen here is con-
siderably less than the 2–3 times reduction reported for
larger confined skyrmions with similar fields [7,8,32].
Furthermore, the ZF trend of dm

sk(w) is found to persist
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FIG. 6. Measured variation of skyrmion size. (a) Summary of measured dm
sk values at ZF (isotropic Gaussian fits to MFM data) for

all samples across dot sizes. Visible trends in dm
sk magnitude and the extent of its w dependence are observed across samples. Open

symbols are derived from multiskyrmion configurations. (b) The ratio dm
sk/w for several values of w versus D/A [see Fig. 5(c)]. (c) Field

dependence of dm
sk for two representative samples—Fe(2)/Co(6) (film-level results included for comparison) and Fe(5)/Co(5)—for

several values of w.
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at finite fields—smaller dots consistently host smaller
skyrmions—in contrast with prior reports [6]. This high-
lights the demonstrable robustness of confinement effects
in Ir/Fe/Co/Pt dots.

VI. CONCLUSION

We present a comprehensive picture of confinement-
induced skyrmion formation and evolution at ZF
in Ir/Fe(x)/Co(y)/Pt dots. Sub-100-nm skyrmions are
stabilized at ZF over a wide range of magnetic
and geometric parameters by intrinsic, interlayer, and
confinement-induced magnetic interactions. The size of
these skyrmions, here as small as approximately 50 nm,
varies with magnetic and geometric parameters by up to
approximately 2.5 times in either case. Finally, the ZF
stability of multiskyrmion configurations for κ � 1 and
the stark contrast in size evolution across κ = 1 sug-
gest a strong synergy of thermodynamic and confinement
effects. These results provide a platform for harnessing the
properties of nanoscale skyrmions in confined geometries.

First, the sub-100-nm Néel skyrmions at ZF reported
here show markedly different physical characteristics from
confined skyrmion bubbles [7,8,32]. This indicates that
despite their nominally identical topological characteris-
tics [12,13], exploration of the stability [28], structure
[32], and mobility [40] of these spin textures could require
independent lines of investigation. Our comprehensive
investigation of confined Néel skyrmions offers a firm
foundation tailor-made for such efforts. Second, the man-
ifestly distinct trends in skyrmion configuration and size
with variation of κ go beyond existing predictions [5,24,
27,28]. While recent studies have incorporated the effects
of granularity [32,41], interlayer coupling [6], and dipo-
lar interactions [28,37], we posit that future studies of
confined skyrmions would benefit from harnessing their
differing behavior with thermodynamic stability. Finally,
the elastic tuning of skyrmion size with confinement opens
up the exciting possibility of designer magnetic lattices
with topological properties—with the potential to engi-
neer frustration, criticality, and topology under ambient
conditions [42].

Crucially, the realization of sub-100-nm ZF skyrmions
in a device-relevant geometry prompts their immediate
use along technological lines, especially within perpendic-
ular magnetic-tunnel-junction devices. First, the demon-
strable modulation of their stability and size with mag-
netic interactions and confinement enables mechanistic
investigations of skyrmion creation [4], detection [17,18],
and dynamics [5] in ambient, device-ready conditions.
Next, their sub-100-nm size and ZF stability over a wide
range would make possible energy-efficient microwave
detectors [14], oscillators [23], spin valves [22], and
magnonic crystals [43]. Finally, their topological stability
and malleability with confinement are particularly suited

for highly scalable realizations of random access memory
and synaptic computing [44].
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