337 research outputs found

    Adiabatic far-field sub-diffraction imaging

    Get PDF
    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale

    Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase

    Get PDF
    The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (~1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (>several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics

    Liquid crystal dynamics in the isotropic phase

    Get PDF
    The dynamics in the isotropic phase of the liquid crystal 1-isothiocyanato-(4-propylcyclohexyl) benzene (3-CHBT) are investigated from very short time (~1 ps) to very long time (>100 ns) as function of temperature. The data decay exponentially only on the longest time scale (>10 ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudo-nematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. Over the full range of times, the data are fit with a model function that contains a short time power law. The power law exponent is temperature independent over a wide range of temperatures. Integration of the function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics

    Joint Deployment and Resource Management for VLC-enabled RISs-assisted UAV Networks

    Get PDF
    In this paper, the problem of the deployment and resource management for visible light communication (VLC)-enabled, reconfigurable intelligent surfaces (RISs)-assisted unmanned aerial vehicle (UAV) networks is investigated. In the considered model, UAVs provide terrestrial users with wireless services and illumination simultaneously. Moreover, RISs are utilized to further improve the channel quality between UAVs and users. This joint placement and resource management problem is constructed aiming at acquiring the optimal UAV deployment, RISs phase shift, user and RIS association that satisfies the users’ needs with minimum consumption of the UAVs’ energy. An iterative algorithm that alternately optimizes continuous and binary variables is proposed to solve this mixed-integer programming problem. Specifically, RISs phase shift optimization is solved by phases alignment method and semidefinite program algorithm. Next, the successive convex approximation algorithm is proposed to settle the UAV deployment problem. The user and RIS association variables are relaxed to the continuous ones before adopting the dual method to find the optimal solution. Moreover, a greedy algorithm is proposed as an alternative to RIS association optimization with low complexity. Simulation results show that the proposed two schemes harvest the superior performance of 34.85% and 32.11% energy consumption reduction over the case without RIS, respectively

    Orientational Dynamics of the Ionic Organic Liquid 1-Ethyl-3-Methylimidazolium Nitrate

    Get PDF
    Optical heterodyne-detected optical Kerr effect ͑OHD-OKE͒ experiments are used to study the orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM ϩ NO 3 Ϫ ) over time scales from ϳ1 ps to ϳ2 ns, and the temperatures range from 410 to 295 K. The temperatures cover the normal liquid state and the weakly supercooled state. The orientational dynamics exhibit characteristics typical of normal organic glass-forming liquids. The longest time scale portion of the data decays as a single exponential and obeys the Debye-StokesEinstein relation. The decay of the OHD-OKE signal begins (ϳ1 ps) with a temperature independent power law, t Ϫz , zϭ1.02Ϯ0.05, the ''intermediate power law.'' The power law decay is followed by a crossover region, modeled as a second power law, the von Schweidler power law. The longest time scale decay is the exponential ␣ relaxation. The intermediate power law decay has been observed in van der Waals supercooled liquids previously. These are the first such observations on an ionic organic liquid. The observation of the dynamical signatures observed in other liquids demonstrates that the orientational dynamics of ionic organic liquids are fundamentally the same as van der Waals liquids and supports the universality of the intermediate power law decay in the dynamics of complex liquids. Within the mode-coupling theory ͑MCT͒ framework, the MCT critical temperature T C is estimated to be T C Х255 K

    Online Resource Allocation for Semantic-Aware Edge Computing Systems

    Full text link
    In this paper, we propose a semantic-aware joint communication and computation resource allocation framework for MEC systems. In the considered system, random tasks arrive at each terminal device (TD), which needs to be computed locally or offloaded to the MEC server. To further release the transmission burden, each TD sends the small-size extracted semantic information of tasks to the server instead of the original large-size raw data. An optimization problem of joint semanticaware division factor, communication and computation resource management is formulated. The problem aims to minimize the energy consumption of the whole system, while satisfying longterm delay and processing rate constraints. To solve this problem, an online low-complexity algorithm is proposed. In particular, Lyapunov optimization is utilized to decompose the original coupled long-term problem into a series of decoupled deterministic problems without requiring the realizations of future task arrivals and channel gains. Then, the block coordinate descent method and successive convex approximation algorithm are adopted to solve the current time slot deterministic problem by observing the current system states. Moreover, the closed-form optimal solution of each optimization variable is provided. Simulation results show that the proposed algorithm yields up to 41.8% energy reduction compared to its counterpart without semantic-aware allocation

    Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid

    Full text link
    Dynamics of a coarse-grained model for the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom site representation are studied via molecular dynamics simulations. The dynamically heterogeneous behavior of the model resembles that of fragile supercooled liquids. At or close to room temperature, the model ionic liquid exhibits slow dynamics, characterized by nonexponential structural relaxation and subdiffusive behavior. The structural relaxation time, closely related to the viscosity, shows a super-Arrhenius behavior. Local excitations, defined as displacement of an ion exceeding a threshold distance, are found to be mainly responsible for structural relaxation in the alternating structure of cations and anions. As the temperature is lowered, excitations become progressively more correlated. This results in the decoupling of exchange and persistence times, reflecting a violation of the Stokes-Einstein relation.Comment: Published on the Phys. Chem. Chem. Phys. websit

    Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics

    Get PDF
    Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl3) and calcium chloride (CaCl2), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H+) and hydroxide ion (OH−) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl3 and CaCl2 caused soil Fe and Cl residuals and led to 4.33–7.59% and 139–172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields
    corecore