Dynamics of a coarse-grained model for the room-temperature ionic liquid,
1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom
site representation are studied via molecular dynamics simulations. The
dynamically heterogeneous behavior of the model resembles that of fragile
supercooled liquids. At or close to room temperature, the model ionic liquid
exhibits slow dynamics, characterized by nonexponential structural relaxation
and subdiffusive behavior. The structural relaxation time, closely related to
the viscosity, shows a super-Arrhenius behavior. Local excitations, defined as
displacement of an ion exceeding a threshold distance, are found to be mainly
responsible for structural relaxation in the alternating structure of cations
and anions. As the temperature is lowered, excitations become progressively
more correlated. This results in the decoupling of exchange and persistence
times, reflecting a violation of the Stokes-Einstein relation.Comment: Published on the Phys. Chem. Chem. Phys. websit