11,516 research outputs found

    Role of the Brans-Dicke scalar in the holographic description of dark energy

    Full text link
    We study cosmological application of the holographic energy density in the Brans-Dicke theory. Considering the holographic energy density as a dynamical cosmological constant, it is more natural to study it in the Brans-Dicke theory than in general relativity. Solving the Friedmann and Brans-Dicke field equations numerically, we clarify the role of Brans-Dicke field during evolution of the universe. When the Hubble horizon is taken as the IR cutoff, the equation of state (w_{\Lmd}) for the holographic energy density is determined to be 5/3 when the Brans-Dicke parameter \omg goes infinity. This means that the Brans-Dicke field plays a crucial role in determining the equation of state. For the particle horizon IR cutoff, the Brans-Dicke scalar mediates a transition from w_{\Lmd} = -1/3 (past) to w_{\Lmd} = 1/3 (future). If a dust matter is present, it determines future equation of state. In the case of future event horizon cutoff, the role of the Brans-Dicke scalar and dust matter are turned out to be trivial, whereas the holographic energy density plays an important role as a dark energy candidate with w_{\Lmd} =-1.Comment: 10pages, 3figures, version to appear in PL

    First-order magnetic and structural phase transitions in Fe1+y_{1+y}Sex_xTe1x_{1-x}

    Full text link
    We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe1+y_{1+y}Se% x_xTe1x_{1-x}. Fe1.068_{1.068}Te exhibits a first order phase transition near 67 K with a tetragonal to monoclinic structural transition and simultaneously develops a collinear antiferromagnetic (AF) order responsible for the entropy change across the transition. Systematic studies of FeSe%_{1-x}Tex_x system reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based pnictides. These results call into question the conclusions of present density functional calculations, where FeSe1x_{1-x}Tex_x and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same spin-density-wave AF order.Comment: 5 pages, 3 figure

    The relationship between web enjoyment and student perceptions and learning using a web-based tutorial

    Get PDF
    Web enjoyment has been regarded as a component of system experience. However, there has been little targeted research considering the role of web enjoyment alone in student learning using web-based systems. To address this gap, this study aims to examine the influence of web enjoyment on learning performance and perceptions by controlling system experience as a variable in the study. 74 students participated in the study, using a web-based tutorial covering subject matter in the area of 'Computation and algorithms'. Their learning performance was assessed with a pre-test and a post-test and their learning perceptions were evaluated with a questionnaire. The results indicated that there are positive relationships between the levels of web enjoyment and perceived usefulness and non-linear navigation for users with similar, significant levels of system experience. The implications of these findings in relation to web-based learning are explored and ways in which the needs of students who report different levels of web enjoyment might be met are discussed

    Quantum Black Holes from Cosmic Rays

    Get PDF
    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.Comment: 6 pages, 3 figure

    Aqua­(dicyanamido-κN 1)(nitrato-κ2 O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)manganese(II)

    Get PDF
    In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H⋯N hydrogen bonds generating chains along [010]

    Modelling the electronic structure and magnetic properties of LiFeAs and FeSe using hybrid-exchange density functional theory

    Full text link
    The electronic structure and magnetic properties of LiFeAs and FeSe have been studied using hybrid exchange density functional theory. The total energies for a unit cell in LiFeAs and FeSe with different spin states including non-magnetic and spin-2 are calculated. The spin-2 configuration has the lower energy for both LiFeAs and FeSe. The computed anti-ferromagnetic exchange interactions between spins on the nearest (next nearest) neighbouring Fe atoms in LiFeAs and FeSe are approximately 14 (17) meV and 6 (13) meV respectively. The total energies of the checkerboard and stripe-type anti-ferromagnetic ordering for LiFeAs and FeSe are compared, yielding that for LiFeAs the checkerboard is lower whereas for FeSe the stripe-type is lower. However, owing to the fact that the exchange interaction of the next nearest neighbour is larger than that of the nearest one, which means that the collinear ordering might be the ground state. These results are in agreement with previous theoretical calculations and experiments. Especially the calculations for LiFeAs indicate a co-existence of conducting d-bands at the Fermi surface and d-orbital magnetism far below the Fermi surface. The theoretical results presented here might be useful for the experimentalists working on the electronic structure and magnetism of iron-based superconductors.Comment: 7 pages, 4 figures, 1 table, accepted by Solid State Communication

    Electronic Structure, Magnetism and Superconductivity of Layered Iron Compounds

    Full text link
    The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase.Comment: Proceedings ISS200

    Field-Induced Magnetostructural Transitions in Antiferromagnetic Fe1+yTe1-xSx

    Full text link
    The transport and structural properties of Fe1+yTe1-xSx (x=0, 0.05, and 0.10) crystals were studied in pulsed magnetic fields up to 65 T. The application of high magnetic fields results in positive magnetoresistance effect with prominent hystereses in the antiferromagnetic state. Polarizing microscope images obtained at high magnetic fields showed simultaneous occurrence of structural transitions. These results indicate that magnetoelastic coupling is the origin of the bicollinear magnetic order in iron chalcogenides.Comment: 5 pages, 5 figures, accepted for publication in Journal of the Physical Society of Japa

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
    corecore