74 research outputs found

    Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations in the solar corona

    Full text link
    1.5D Vlasov-Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the solar physics context. The simulations mimic the plasma emission mechanism and Larmor drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. When density gradient is removed (i.e. when plasma becomes stable to Larmor-drift instability) and a lowlow density, super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, plasma emission mechanism generates non-escaping Langmuir type oscillations which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, the standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips observed in some dynamical spectra. Quasilinear theory predictions: (i) the electron free streaming and (ii) the beam long relaxation time, in accord with the analytic expressions, are corroborated via direct, fully-kinetic simulation. Finally, the interplay of Larmor-drift instability and plasma emission mechanism is studied by considering densedense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. http://www.maths.qmul.ac.uk/~tsiklauri/movie1.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie2.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie3.mpgComment: Solar Physics (in press, the final, accepted version

    Magnetism, Critical Fluctuations and Susceptibility Renormalization in Pd

    Full text link
    Some of the most popular ways to treat quantum critical materials, that is, materials close to a magnetic instability, are based on the Landau functional. The central quantity of such approaches is the average magnitude of spin fluctuations, which is very difficult to measure experimentally or compute directly from the first principles. We calculate the parameters of the Landau functional for Pd and use these to connect the critical fluctuations beyond the local-density approximation and the band structure.Comment: Replaced with the revised version accepted for publication. References updated, errors corrected, other change

    Stock-ADR Arbitrage: Microstructure Risk

    Get PDF
    This paper is the first to highlight that the stock-ADR arbitrage pair trading found by Alsayed and McGroarty (2012) is directly influenced by the market microstructure of ADRs. In Alsayed and McGroarty (2012) they are the first to demonstrate that arbitrage opportunities exist between stocks and their ADRs, through convergence pairs trading. Given that such arbitrage opportunities exist, we pose the question as to why such pair trades occur, rather than be eliminated by the law of one price? Using high frequency data over a 3 year sample period, with over 3.7 million 1-min observations, we investigate stock-ADR arbitrage pair trading. In this paper, we find pair trading returns exhibit substantial asymmetry in returns: pair trades involving ADR shorts (compared to stock shorts) have significantly less probability of loss, substantially higher returns but higher convergence risk. The asymmetric results are consistent with the market microstructure of ADR trading, specifically the sourcing of ADRs. Whilst long and short stocks can be easily sourced from the relevant markets, long and short ADR sourcing is less viable due to the market microstructure, but also, ADR’s microstructure directly impacts the stock’s price. We test our microstructure hypothesis further for robustness, with respect to specific investor types (such as retail traders), as well as during different market conditions (before, during and after the commencement of the global financial crisis), and find our results are consistent with our ADR microstructure hypothesis. This is also supported by CFD (contracts for difference) and ADR pairs trading results. Our results also confirm the results of Alsayed and McGroarty (2012) by conducting trades over a substantially longer and more varied trading period. Our results have implications for ADR markets, as well as market microstructures upon financial innovations such as exchange traded funds

    Macroscopic limits and phase transition in a system of self-propelled particles

    Get PDF
    We investigate systems of self-propelled particles with alignment interaction. Compared to previous work, the force acting on the particles is not normalized and this modification gives rise to phase transitions from disordered states at low density to aligned states at high densities. This model is the space inhomogeneous extension of a previous work by Frouvelle and Liu in which the existence and stability of the equilibrium states were investigated. When the density is lower than a threshold value, the dynamics is described by a non-linear diffusion equation. By contrast, when the density is larger than this threshold value, the dynamics is described by a hydrodynamic model for self-alignment interactions previously derived in Degond and Motsch. However, the modified normalization of the force gives rise to different convection speeds and the resulting model may lose its hyperbolicity in some regions of the state space

    Biology, Fishery, Conservation and Management of Indian Ocean Tuna Fisheries

    Get PDF
    The focus of the study is to explore the recent trend of the world tuna fishery with special reference to the Indian Ocean tuna fisheries and its conservation and sustainable management. In the Indian Ocean, tuna catches have increased rapidly from about 179959 t in 1980 to about 832246 t in 1995. They have continued to increase up to 2005; the catch that year was 1201465 t, forming about 26% of the world catch. Since 2006 onwards there has been a decline in the volume of catches and in 2008 the catch was only 913625 t. The Principal species caught in the Indian Ocean are skipjack and yellowfin. Western Indian Ocean contributed 78.2% and eastern Indian Ocean 21.8% of the total tuna production from the Indian Ocean. The Indian Ocean stock is currently overfished and IOTC has made some recommendations for management regulations aimed at sustaining the tuna stock. Fishing operations can cause ecological impacts of different types: by catches, damage of the habitat, mortalities caused by lost or discarded gear, pollution, generation of marine debris, etc. Periodic reassessment of the tuna potential is also required with adequate inputs from exploratory surveys as well as commercial landings and this may prevent any unsustainable trends in the development of the tuna fishing industry in the Indian Ocean

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Structure of the Bacillus subtilis phage SPO1-encoded type II DNA-binding protein TF1 in solution

    No full text
    The solution structure of a type II DNA-binding protein, the bacteriophage SPO1-encoded transcription factor 1 (TF1), was determined using NMR spectroscopy. Selective 2H-labeling, 13C-labeling and isotopic heterodimers were used to distinguish contacts between and within monomers of the dimeric protein. A total of 1914 distance and dihedral angle constraints derived from NMR experiments were used in structure calculations using restrained molecular dynamics and simulated annealing protocols. The ensemble of 30 calculated structures has a root-mean-square deviation (r.m.s.d.) of 0.9 Å, about the average structure for the backbone atoms, and 1.2 Å for all heavy-atoms of the dimeric core (helices 1 and 2) and the β-sheets. A severe helix distortion at residues 92-93 in the middle of helix 3 is associated with r.m.s.d, of ~1.5 Å for the helix 3 backbone. Deviations of ~5 Å or larger are noted for the very flexible β-ribbon arms that constitute part of a proposed DNA-binding region. A structural model of TF1 has been calculated based on the previously reported crystal structure of the homologous HU protein and this model was used as the starting structure for calculations. A comparison between the calculated average solution structure of TF1 and a solution structure of HU indicates a similarity in the dimeric core (excluding the nine amino acid residue tail) with pairwise deviations of 2 to 3 Å. The largest deviations between the average structure and the HU solution structure were found in the β-ribbon arms, as expected. A 4 Å deviation is found at residue 15 of TF1 which is in a loop connecting two helical segments; it has been reported that substitution of Glu15 by Gly increases the thermostability of TF1. The homology between TF1 and other proteins of this family leads us to anticipate similar tertiary structures

    Fluoroketone inhibition of Ca2+-independent phospholipase A 2 through binding pocket association defined by hydrogen/deuterium exchange and molecular dynamics

    No full text
    The mechanism of inhibition of group VIA Ca2+-independent phospholipase A2 (iPLA2) by fluoroketone (FK) ligands is examined by a combination of deuterium exchange mass spectrometry (DXMS) and molecular dynamics (MD). Models for iPLA2 were built by homology with the known structure of patatin and equilibrated by extensive MD simulations. Empty pockets were identified during the simulations and studied for their ability to accommodate FK inhibitors. Ligand docking techniques showed that the potent inhibitor 1,1,1,3-tetrafluoro-7-phenylheptan-2-one (PHFK) forms favorable interactions inside an active-site pocket, where it blocks the entrance of phospholipid substrates. The polar fluoroketone headgroup is stabilized by hydrogen bonds with residues Gly486, Gly487, and Ser519. The nonpolar aliphatic chain and aromatic group are stabilized by hydrophobic contacts with Met544, Val548, Phe549, Leu560, and Ala640. The binding mode is supported by DXMS experiments showing an important decrease of deuteration in the contact regions in the presence of the inhibitor. The discovery of the precise binding mode of FK ligands to the iPLA2 should greatly improve our ability to design new inhibitors with higher potency and selectivity. © 2012 American Chemical Society
    corecore