2,023 research outputs found

    Constraints on Deflation from the Equation of State of Dark Energy

    Get PDF
    In cyclic cosmology based on phantom dark energy the requirement that our universe satisfy a CBE-condition ({\it Comes Back Empty}) imposes a lower bound on the number NcpN_{\rm cp} of causal patches which separate just prior to turnaround. This bound depends on the dark energy equation of state w=p/ρ=1ϕw = p/\rho = -1 - \phi with ϕ>0\phi > 0. More accurate measurement of ϕ\phi will constrain NcpN_{\rm cp}. The critical density ρc\rho_c in the model has a lower bound ρc(109GeV)4\rho_c \ge (10^9 {\rm GeV})^4 or ρc(1018GeV)4\rho_c \ge (10^{18} {\rm GeV})^4 when the smallest bound state has size 101510^{-15}m, or 103510^{-35}m, respectively.Comment: 23 pages, 3 figures, typos fixe

    Intracranial Myeloid Sarcoma Metastasis Mimicking Acute Subdural Hematoma

    Get PDF
    Myeloid sarcoma, a rare consequence of myeloproliferative disorders, is rarely seen in the central nervous system, most commonly in the pediatric population. Although there are a handful of case reports detailing initial presentation of CNS myeloid sarcoma in the adult population, we have been unable to find any reports of CNS myeloid sarcoma presenting as a large mass lesion in a herniating patient. Here, we present the case of a patient transferred to our facility for a very large subdural hematoma. Based on imaging characteristics, it was felt to be a spontaneous hematoma secondary to coagulopathy. No coagulopathy was found. Interestingly, he did have a history of acute myeloid leukemia (AML) diagnosed 2 months previously, and intraoperatively he was found to have a confluent white mass invading both the subdural and subarachnoid spaces. There was minimal associated hemorrhage and final pathology showed myeloid sarcoma. This is the first report we are aware of in which CNS myeloid sarcoma presented as a subdural metastasis and also the first report in which we are aware of this etiology causing a herniation syndrome secondary to mass effect

    Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.

    Get PDF
    STUDY DESIGN: This study was a retrospective, multicenter cohort study. OBJECTIVES: Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience. METHODS: This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC. RESULTS: Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects. CONCLUSIONS: PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects

    Morphology of supported polymer electrolyte ultra-thin films: a numerical study

    Full text link
    Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed

    The generalized second law of thermodynamics of the universe bounded by the event horizon and modified gravity theories

    Full text link
    In this paper, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic model of the universe has been considered. In the third case the matter in the universe is taken in the form of non-interacting two fluid system as holographic dark energy and dust. Here we study the above cases in the Modified gravity, f(R) gravity.Comment: 9 page

    Epidemiology and Outcomes of Vertebral Artery Injury in 16 582 Cervical Spine Surgery Patients: An AOSpine North America Multicenter Study.

    Get PDF
    STUDY DESIGN: A multicenter retrospective case series was compiled involving 21 medical institutions. Inclusion criteria included patients who underwent cervical spine surgery between 2005 and 2011 and who sustained a vertebral artery injury (VAI). OBJECTIVE: To report the frequency, risk factors, outcomes, and management goals of VAI in patients who have undergone cervical spine surgery. METHODS: Patients were evaluated on the basis of condition-specific functional status using the Neck Disability Index (NDI), modified Japanese Orthopaedic Association (mJOA) score, the Nurick scale, and the 36-Item Short-Form Health Survey (SF-36). RESULTS: VAIs were identified in a total of 14 of 16 582 patients screened (8.4 per 10 000). The mean age of patients with VAI was 59 years (±10) with a female predominance (78.6%). Patient diagnoses included myelopathy, radiculopathy, cervical instability, and metastatic disease. VAI was associated with substantial blood loss (770 mL), although only 3 cases required transfusion. Of the 14 cases, 7 occurred with an anterior-only approach, 3 cases with posterior-only approach, and 4 during circumferential approach. Fifty percent of cases of VAI with available preoperative imaging revealed anomalous vessel anatomy during postoperative review. Average length of hospital stay was 10 days (±8). Notably, 13 of the 14 (92.86%) cases resolved without residual deficits. Compared to preoperative baseline NDI, Nurick, mJOA, and SF-36 scores for these patients, there were no observed changes after surgery (P = .20-.94). CONCLUSIONS: Vertebral artery injuries are potentially catastrophic complications that can be sustained from anterior or posterior cervical spine approaches. The data from this study suggest that with proper steps to ensure hemostasis, patients recover function at a high rate and do not exhibit residual deficits

    Ground-state properties of tubelike flexible polymers

    Full text link
    In this work we investigate structural properties of native states of a simple model for short flexible homopolymers, where the steric influence of monomeric side chains is effectively introduced by a thickness constraint. This geometric constraint is implemented through the concept of the global radius of curvature and affects the conformational topology of ground-state structures. A systematic analysis allows for a thickness-dependent classification of the dominant ground-state topologies. It turns out that helical structures, strands, rings, and coils are natural, intrinsic geometries of such tubelike objects

    Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141.

    Get PDF
    Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2's impact on HCMV pathogenesis.This study was financially supported by grant 101-2917-I-564-035 from the Taiwan National Science Council to JLH; by a Wellcome Trust Fellowship (093966/Z/10/Z) to MPW; an MRC Project Grant and Wellcome Trust Programme Grant (G1000236, WT090323MA) to GWW and PT, European Regional Development Fund and the State Budget of Czech Republic (RECAMO, CZ.1.05/ 2.1.00/03.0101) to ER; a Wellcome Trust Principal Research Fellowship (084957/Z/08/Z) to PJL; and a Medical Research Council (MRC) grant (MC_UU_12014/3) to GSW and AJD. This study was additionally supported by the Cambridge Biomedical Research Centre, UK.This is the final published version. It first appeared at http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004811
    corecore