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Abstract

In cyclic cosmology based on phantom dark energy the require-
ment that our universe satisfy a CBE-condition (Comes Back Empty)
imposes a lower bound on the number Ncp of causal patches which
separate just prior to turnaround. This bound depends on the dark
energy equation of state w = p/ρ = −1−φ with φ > 0. More accurate
measurement of φ will constrain Ncp. The critical density ρc in the
model has a lower bound ρc ≥ (109GeV)4 or ρc ≥ (1018GeV)4 when
the smallest bound state has size 10−15m, or 10−35m, respectively.
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1 Introduction

Recently two of the authors have proposed [1–3] a scenario for a cyclic uni-
verse based on a dark energy component with constant equation of state
satisfying w = p/ρ = −1−φ where w < −1 and hence φ > 0. The model in-
volves two key ideas: (i) that the universe deflate just prior to the turnaround
from expansion to contraction by disintegrating into a very large number
Ncp of causal patches. In the notation of [1], note that Ncp = 1/f 3; (ii)
that the contracting universe be empty, meaning that one causal patch at
turnaround must contain no matter or black holes, only dark energy. This
is called the CBE condition (Comes Back Empty). Implementation of CBE
requires, as we shall explain, a lower bound on Ncp which depends on the
length scale L characterising the smallest bound system. We shall consider
both L = 10−15m for a nucleon then L ≥ 10−35m for a PPP (Presently Point

Particle) meaning a particle which at present is considered to be pointlike,
like a quark or a lepton, but which actually has a characteristic size at least
a few orders of magnitude smaller than a nucleon but greater than or equal
to the Planck scale.

In the foreseeable future, it is expected that the equation of state of the
dark energy w, and hence φ, will be measured with higher accuracy by, for
example, the Planck Surveyor satellite [4]. What we shall show is that this
measurement can, within this model, constrain for a given w the number Ncp

of causal patches at turnaround by imposing a lower bound thereon.

The plan of the paper is that in Section 2 we discuss the times at which
unbinding, causal disconnection and turnaround occur. In Section 3, the
constraints on Ncp from measurement of φ are derived. Finally, Section 4 is
a discussion. In the Appendices is technical material to supplement the main
text.
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2 Times of unbinding, causal disconnection

and turnaround

In this section we analyze four relationships between cosmic times in the
cyclic model expansion era: i) tunbound (at which a bound system will become
unbound due to the large dark energy force with w < −1); ii) tcaus (at which
a previously bound system becomes casually disconnected, meaning that no
light signal could exchange before the would-be Big Rip; this is how we
estimate Ncp); iii) tT (time when the turnaround occurs); iv) trip (at which
a “would-be” big rip takes place), in addition to the present time t0.

In the Baum-Frampton (BF) model [1], there are three parameters; w
(equation of state of dark energy); ρC (critical density which the total density
in the system ρtot reached at t = tT ); f (the deflation fraction parameter
related to the number of causal patches by Ncp = (1/f 3)). We will analyze
the model taking the value of w lying in a range,

− 1.10000 ≤ ω ≤ −1.00001 , (1)

and for ρC choosing the following range,

(103GeV)4 ≤ ρC ≤ (1019GeV)4 . (2)

The choice of the range of w is motivated by the current lower bound from
observations [5, 6] and the upper bound, by the cosmic variance uncertainty
in this measurement.

Reserving details of the derivation of four formulas to Appendix A, we
shall here refer to the resultant expressions:

• (trip − t0)

trip − t0 ≃
11Gyr

|1 + w| . (3)

• (trip − tunbound)

trip − tunbound = α(w)P , (4)

where [7]

α(w) =

√

2|1 + 3w|
6π|1 + w| , (5)

and P denotes the period associated with the binding force which
had been constraining objects into a certain bound system before t =
tunbound.
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• (trip − tcaus)

trip − tcaus =

∣
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∣
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∣

1 + 3w

3(1 + w)

∣

∣

∣

∣

∣

(

L

c

)

(6)

where c is the speed of light and L stands for the length scale of the
bound system [7].

• (trip − tT )

trip − tT =
11Gyr

|1 + w|10
−14.5η−1/2 (7)

where η is a scale factor of ρC defined by ρC = ηρH2O with ρH2O being
the density if water, ρH2O = 1g · cm−3. Eq.(7) appeared #1 as Eq.(4)
in Ref. [1].

The numerical analysis for these relationships is presented in Appendices
A and B. As a result, we find the lower bound for ρC ,

ρC >
∼(1018GeV)4, (8)

which is obtained by imposing that the time for a presently point particle
(PPP), with the size 10−33m = L, satisfy trip > tT > tPPPcaus > tPPPunbound. It
should be emphasized that this result is almost independent of a choice of w
in the range of interest.

For a nucleon with L ≃ 10−15m, the corresponding lower bound is

ρC >
∼(109GeV)4 . (9)

#1Eq.(7) corrects a typo in the exponent of η appearing in [1]
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3 Given w, the constraints on Ncp

In [1], as in [7], various bound systems were discussed including galaxies,
the Earth-Sun system, the hydrogen atom and a nucleon. Each may be
charaterised by a present length scale L0.

For the CBE condition we must insist that the smallest bound systems are
disintegrated before turnaround which means that the size of a generic causal
patch Lcp (to be defined below) is smaller than the size L(tT ) at turnaround
of the bound system whose present length scale is L(t0) = L0, namely

Lcp ≤ L(tT ) = L0

(

a(tT )

a(tunbound)

)

. (10)

We remind the reader that the CBE condition is mandatory because if the
contracting universe contains matter it will not generally contract sufficiently
but will undergo a premature bounce. Even if a causal patch contains only
one very infra-red photon, this can blue-shift to an energy sufficient to create
e+e− pairs before the bounce, again disallowing sufficient contraction for
infinite cyclicity.

This was the motivation for [3] where it was shown that the mean number
of low-energy photons per causal patch is much less than one and is essentially
zero. There will always be a vanishing but strictly non-zero number of patches
which fail to cycle but it was shown in [2] that the probability of a successful
universe is equal to one; it was noted that the total number of universes has
always been, and always will be constantly infinite and equal to ℵ0 (Aleph-
zero). ℵ0 is a countable infinity, exemplified by the number of primes, of
integers or of rational numbers.

To enable infinite cyclicity we must have the CBE condition, Eq.(10), for
the smallest bound systems. The smallest bound systems we know about are
nucleons with L0 = 10−15m.

To be general, we consider PPPs (Presently Point Particles) meaning
particles which are presently regarded as pointlike but may not be. We allow
a bound state scale for PPPs to be anywhere between the present upper limit
of about (1TeV)−1 = 10−18m and the Planck scale of 10−35m. As we shall see
shortly, the lower bound on Ncp is so sensitive to where L0 is chosen within
these twenty orders of magnitude that its presentation requires us to plot
log10 log10 Ncp against the equation of state of the dark energy.
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Figure 1: Constraint on w and Ncp coming from the CBE condition (Comes Back
Empty), corresponding to inequality (13). The black band in this figure has been created
by varying the length of smaller bound systems from Lp(t0) = 10−33m to Lp(t0) = 10−15m;
the bottom edge corresponds to the lower value of Lp(t0). The region below the black band
is forbidden by the CBE condition.

The present Hubble length rH(t0) is given by

rH(t0) =
1

H0
(11)

which, at the turnaround, would naively become

rH(tT ) = rH(t0)a(tT ) (12)

since by definition a(t0) = 1.

In the cyclic model of [1], the size of a causal patch Lcp is instead defined
by

Lcp =
rH(tT )

Ncp
(13)

and therefore Eq.(10) can be calculated for different values of L0, see Ap-
pendix C. The results are illustrated in Figure 1 where we plot log10 log10Ncp

versus w = −1 − φ.

From this figure we see that a measurement of w in the range anticipated
for the Planck surveyor will provide a lower bound on Ncp. For example
w = −1.05 implies Ncp

>∼ 10630 for disintegration of nucleons and Ncp
>∼ 101000

for disintegration of PPPs with bound scale at the Planck length.
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Figure 2: Constraint for −2 ≤ w ≤ −1.1 and Ncp coming from the CBE condition
(Comes Back Empty), corresponding to inequality (13). The black band in this figure has
been created by varying the length of smaller bound systems from Lp(t0) = 10−33m to
Lp(t0) = 10−15m; the bottom edge corresponds to the lower value of Lp(t0). The region
below the black band is forbidden by the CBE condition.

Since we know the entropy of the present universe is at least S(t0)
>∼ 10102

[8, 9] one must impose
Ncp

>
∼ 10102 (14)

and, by requiring only the dissociation of nucleons we see from Figure 2 that
this implies

w>
∼−2. (15)

Of course, WMAP data [6] already guarantee this condition but it is
interesting that the cyclic model of [1] would be impossible if Eq.(15) had
been violated.
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4 Discussion

What we have deduced is that the parameters ρc, w and Ncp in cyclic cos-
mology are already constrained by existing data. For example one requires
w>∼−2 for the CBE aspect to work.

This constraint is already known to be respected in Nature but as better
and more accurate cosmological data become available it will shed further
light on the viability of the theory.

In particular, the accurate measurement of the equation of state w =
−1−φ is of special interest. Fortunately the Planck Surveyor [4] is anticipated
to acquire improved accuracy on w in the near future. As we have discussed,
this will provide a lower bound on the number Ncp of causal patches necessary
to dissociate the smallest bound systems at turnaround and hence to solve
the entropy problem and, via CBE, enable the possibility of infinite cyclicity.

It is amusing that the physical conditions at the approach of deflation
are so extraordinary that it is natural to ask whether the systems presently
regarded as point particles may be composite because the phantom dark
energy density grows to unimaginably large values and can disintegrate bound
systems down to arbitrarily small scales. We have conservatively limited
our attention to systems bigger than the Planck length. However, although
this requirement seems dictated by considerations of quantum gravity, it is
possible that the dark energy will dissociate even smaller systems if they
exist.

The advantage of cyclic cosmology is that it removes the initial singular-
ity associated with the Big Bang, about 13.7 billion years ago, and allows
that time never began. The previous attempts to create a consistent infinite
cyclicity were stymied between about 1934 [10] and 2002 [11] primarily be-
cause of the entropy problem and the second law of thermodynamics. The
discovery of the accelerated expansion rate of the universe and the concomi-
tant necessity of dark energy has permitted more optimism that the cyclic
cosmology is, after all, on the right track.
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Appendix A

Derivation of formulas and numerical analysis

We begin by writing down the Friedman equation for times (t0 < t < tT
which correspond to the expansion phase [1],

H2(t) ≡
(

ȧ(t)

a(t)

)2

=
8πG

3

[

ρ0Λ
[a(t)]3(1+w)

− [ρtot(t)]
2

ρC

]

, (16)

where we have put Ω0
r = Ω0

m = 0. Taking into account the rapid acceleration
when t0 < t < tT (or trip), we may neglect the last term proportional to
ρ2tot ∼ [a3(1+w)]2, so that

(

ȧ(t)

a(t)

)2

≃ H2
0

Ω0
Λ

[a(t)]3(1+w)
. (17)

With the boundary condition a(trip) = ∞, by employing the equation of
state w < −1, Eq.(17) can readily be solved for an arbitrary time t satisfying
t < trip to get

trip − t = (H0

√

Ω0
Λ)

−1 2

3|1 + w|a(t)
−

3|1+w|
2 . (18)

A1. The formula for (trip − t0)

Taking t = t0 at which point a(t0) = 1 and using current observational
values [5], H0 = 73 km · s−1 ·Mpc−1 and Ω0

Λ = 0.76, we find the time interval
(trip − t0) from Eq.(18) to be [7]

trip − t0 ≃
11Gyr

|1 + w| . (19)

In Table 1 we list the values of (trip − t0) for 37 specific choices of w in the
range −1.10000 ≤ ω ≤ −1.00001.
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w (trip − t0) [Gyr]

−1.10000 110
−1.09000 122
−1.08000 137
−1.07000 157
−1.06000 183
−1.05000 220
−1.04000 275
−1.03000 366
−1.02000 550
−1.01000 1100
−1.00900 1222
−1.00800 1375
−1.00700 1571
−1.00600 1833
−1.00500 2200
−1.00400 2750
−1.00300 3666
−1.00200 5500
−1.00100 11000
−1.00090 12222
−1.00080 13750
−1.00070 15714
−1.00060 18333
−1.00050 22000
−1.00040 27500
−1.00030 36666
−1.00020 55000
−1.00010 110000
−1.00009 122222
−1.00008 137500
−1.00007 157143
−1.00006 183333
−1.00005 220000
−1.00004 275000
−1.00003 366667
−1.00002 550000
−1.00001 1100000

Table 1: Values of (trip − t0) for −1.10000 ≤ ω ≤ −1.00001.
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A2. The formula for (trip − tT)

Putting t = tT in Eq.(18) and dividing both sides by (trip − t0), we find a
relationship independent of both H0 and Ω0

Λ,

trip − tT
trip − t0

= [a(tT )]
− 3φ

2 . (20)

We shall recall here that the turnaround-time tT is characterized by ρΛ(tT ) =
ρC , derived from examining a solution H2 = 0 of Eq.(16), which allows us to
rewrite Eq.(20) as

trip − tT
trip − t0

=

√

ρ0Λ
ρC

, (21)

where we have calculated the right-hand side using

[a(tT )]
−3φ =

ρΛ(t0)

ρΛ(tT )
=

ρΛ(t0)

ρC
. (22)

Following Ref. [1], we may introduce a unit of energy density, ρH2O, in
such a way that the critical density ρC is scaled by a factor of η

ρC ≡ η · ρH2O . (23)

The present dark energy density ρ0Λ can be expressed in terms of ρH2O =
1g/cm3 as

ρ0Λ = 10−29ρH2O , (24)

which immediately leads us to

ρ0Λ
ρC

=
10−29ρH2O

η · ρH2O

= η−110−29 . (25)

Hence we have [1]

trip − tT = (trip − t0) · 10−14.5 · η−1/2 . (26)

In Tables 2 to 4, choosing η = 1029, 1057, 1093, respectively, corresponding
to ρC ≃ (103GeV)4, (1010GeV)4, (1019GeV)4 in units of ρH2O, we list the
values for the time interval (trip − tT ), which turn out to be at most of order
O(10−7 s).
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η = 1029

w (trip − tT ) [s]

−1.10000 3.4× 10−11

−1.09000 3.8× 10−11

−1.08000 4.3× 10−11

−1.07000 4.9× 10−11

−1.06000 5.7× 10−11

−1.05000 6.9× 10−11

−1.04000 8.6× 10−11

−1.03000 1.1× 10−10

−1.02000 1.7× 10−10

−1.01000 3.4× 10−10

−1.00900 3.8× 10−10

−1.00800 4.3× 10−10

−1.00700 4.9× 10−10

−1.00600 5.7× 10−10

−1.00500 6.9× 10−10

−1.00400 8.6× 10−10

−1.00300 1.1× 10−9

−1.00200 1.7× 10−9

−1.00100 3.4× 10−9

−1.00090 3.8× 10−9

−1.00080 4.3× 10−9

−1.00070 4.9× 10−9

−1.00060 5.7× 10−9

−1.00050 6.9× 10−9

−1.00040 8.6× 10−9

−1.00030 1.1× 10−8

−1.00020 1.7× 10−8

−1.00010 3.4× 10−8

−1.00009 3.8× 10−8

−1.00008 4.3× 10−8

−1.00007 4.9× 10−8

−1.00006 5.7× 10−8

−1.00005 6.9× 10−8

−1.00004 8.6× 10−8

−1.00003 1.1× 10−7

−1.00002 1.7× 10−7

−1.00001 3.4× 10−7

Table 2: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1029

fixed.
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η = 1057

w (trip − tT ) [s]

−1.10000 3.4× 10−25

−1.09000 3.8× 10−25

−1.08000 4.3× 10−25

−1.07000 4.9× 10−25

−1.06000 5.7× 10−25

−1.05000 6.9× 10−25

−1.04000 8.6× 10−25

−1.03000 1.1× 10−24

−1.02000 1.7× 10−24

−1.01000 3.4× 10−24

−1.00900 3.8× 10−24

−1.00800 4.3× 10−24

−1.00700 4.9× 10−24

−1.00600 5.7× 10−24

−1.00500 6.9× 10−24

−1.00400 8.6× 10−24

−1.00300 1.1× 10−23

−1.00200 1.7× 10−23

−1.00100 3.4× 10−23

−1.00090 3.8× 10−23

−1.00080 4.3× 10−23

−1.00070 4.9× 10−23

−1.00060 5.7× 10−23

−1.00050 6.9× 10−23

−1.00040 8.6× 10−23

−1.00030 1.1× 10−22

−1.00020 1.7× 10−22

−1.00010 3.4× 10−22

−1.00009 3.8× 10−22

−1.00008 4.3× 10−22

−1.00007 4.9× 10−22

−1.00006 5.7× 10−22

−1.00005 6.9× 10−22

−1.00004 8.6× 10−22

−1.00003 1.1× 10−21

−1.00002 1.7× 10−21

−1.00001 3.4× 10−21

Table 3: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1057

fixed.
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η = 1093

w (trip − tT ) [s]

−1.10000 3.4× 10−43

−1.09000 3.8× 10−43

−1.08000 4.3× 10−43

−1.07000 4.9× 10−43

−1.06000 5.7× 10−43

−1.05000 6.9× 10−43

−1.04000 8.6× 10−43

−1.03000 1.1× 10−42

−1.02000 1.7× 10−42

−1.01000 3.4× 10−42

−1.00900 3.8× 10−42

−1.00800 4.3× 10−42

−1.00700 4.9× 10−42

−1.00600 5.7× 10−42

−1.00500 6.9× 10−42

−1.00400 8.6× 10−42

−1.00300 1.1× 10−41

−1.00200 1.7× 10−41

−1.00100 3.4× 10−41

−1.00090 3.8× 10−41

−1.00080 4.3× 10−41

−1.00070 4.9× 10−41

−1.00060 5.7× 10−41

−1.00050 6.9× 10−41

−1.00040 8.6× 10−41

−1.00030 1.1× 10−40

−1.00020 1.7× 10−40

−1.00010 3.4× 10−40

−1.00009 3.8× 10−40

−1.00008 4.3× 10−40

−1.00007 4.9× 10−40

−1.00006 5.7× 10−40

−1.00005 6.9× 10−40

−1.00004 8.6× 10−40

−1.00003 1.1× 10−39

−1.00002 1.7× 10−39

−1.00001 3.4× 10−39

Table 4: Values of (trip − tT ) for −1.10000 ≤ ω ≤ −1.00001 with η = 1093

fixed.
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A3. The formula for (trip − tunbound)

Let us next consider a time tunbound at which point a gravitationally bound
system will become unbound due to an extraordinarily rapid expansion of
the universe. Roughly speaking, a bound system in circular orbit at radius
R with mass M becomes unbound when

4π

3
R3ρΛ(tunbound)|1 + 3w| ≃ M , (27)

where the left-hand side comes from the Tµν-term in the right-hand side of
the Einstein equation.

Putting t = tunbound in Eq.(18) and rewriting the overall factor (H0

√
Ω)−1,

in terms of ρ0Λ and the gravitational constant G, as (H0

√
Ω)−1 = (8πG/3 ·

ρ0Λ)
−1/2, we may express a time interval (trip − tunbound) as

(trip − tunbound) = (8πG/3ρ0Λ)
−1/2 2

3|1 + w| [a(tunbound)]
− 3|1+w|

2

= (8πG/3)−1/2

√

1

ρ0Λ

2

3|1 + w|

√

ρ0Λ
ρΛ(tunbound)

= (8πG/3)−1/2 2

3|1 + w|

√

1

ρΛ(tunbound)
. (28)

Using Eq.(27) we can further rewrite the right-hand side as

(trip − tunbound) =

√

2|1 + 3w|
3|1 + w|

√

R3

GM

=

√

2|1 + 3w|
6π|1 + w| P , (29)

where in the last line we have used a relationship from classical gravitational
systems,

P = 2π

√

R3

GM
, (30)

in which P denotes the period for a circular orbit of radius R around a system
bound by gravitational force with mass M . Thus we reach the expression [7]
for the time interval (trip − tunbound),

(trip − tunbound) = α(w)P , (31)

where

α(w) =

√

2|1 + 3w|
6π|1 + w| . (32)
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Similarly to Eq.(27), even for binding forces other than gravity, we can
roughly estimate an unbound-time tunbound. For simplicity, we shall derive
here a relationship similar to Eq.(27) focusing on an electromagnetically
bound system, e.g., a hydrogen atom H , in which the electron is constrained
on a circular orbit of radius R by the Coulomb force around a proton. This
can be done just by taking into account the balance problem between the
Coulomb force FC and the dark energy force Fw. We find that the system
will become unbound when

FC ≃ Fw(tunbound) ,

→ e2

4πǫ0

1

R2
≃ G

memeff(w, tunbound)

R2
, (33)

where meff(w, tunbound) denotes an effective “mass” arising from the dark
energy density at t = tunbound,

meff(w, tunbound) =
4πR3

3
ρΛ(tunbound)|1 + 3w| . (34)

Using the expression for the period associated with the electromagnetic force,

Pem = 2π

√

meR3

h̄cα
, (35)

we can rewrite Eq.(33) as

ρΛ(tunbound)|1 + 3w| ≃ 3π

GP 2
em

, (36)

which leads immediately to the formula for (trip − tHunbound) in the case of an
H atom. As a result, we find it take the same form as Eq.(31),

trip − tHunbound = α(w)Pem . (37)

It is straightforward to show that, for other binding forces (e.g. strong
forces, etc.), the form of Eq.(37) is unchanged except for replacing Pem with
the appropriate one associated with the binding force.

Choosing typical bound systems – galaxy, Sun-Earth, and hydrogen atom
– and supplying the corresponding values for the period P (Pem)

Bound System P L

Typical Galaxy 2.0× 10 yr 1.6× 104 pc
Sun-Earth 1 yr 1.5× 108 km

Hydrogen Atom 10−16 s 0.5× 10−10 m

we calculate the values of (trip − tunbound) for each bound system by tak-
ing values of w from the range −1.10000 ≤ ω ≤ −1.00001. The result is
summarized in Table 5.
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( trip − tunbound)
w Typical Galaxy [Gyr] Sun-Earth [yr] Hydrogen Atom [s]

−1.10000 0.22 1.13 1.13× 10−16

−1.09000 0.25 1.25 1.25× 10−16

−1.08000 0.28 1.40 1.40× 10−16

−1.07000 0.31 1.59 1.59× 10−16

−1.06000 0.36 1.84 1.84× 10−16

−1.05000 0.44 2.20 2.20× 10−16

−1.04000 0.54 2.73 2.73× 10−16

−1.03000 0.72 3.61 3.61× 10−16

−1.02000 1.07 5.38 5.38× 10−16

−1.01000 2.13 10.6 1.06× 10−15

−1.00900 2.37 11.8 1.18× 10−15

−1.00800 2.66 13.3 1.33× 10−15

−1.00700 3.04 15.2 1.52× 10−15

−1.00600 3.55 17.7 1.77× 10−15

−1.00500 4.26 21.3 2.13× 10−15

−1.00400 5.32 26.6 2.66× 10−15

−1.00300 7.08 35.4 3.54× 10−15

−1.00200 10.2 53.1 5.31× 10−15

−1.00100 21.2 106 1.06× 10−14

−1.00090 23.5 117 1.17× 10−14

−1.00080 26.5 132 1.32× 10−14

−1.00070 30.3 151 1.51× 10−14

−1.00060 35.3 176 1.76× 10−14

−1.00050 42.4 212 2.12× 10−14

−1.00040 53.0 265 2.65× 10−14

−1.00030 70.7 353 3.53× 10−14

−1.00020 106 530 5.30× 10−14

−1.00010 212 1061 1.06× 10−13

−1.00009 235 1179 1.17× 10−13

−1.00008 265 1326 1.32× 10−13

−1.00007 303 1515 1.51× 10−13

−1.00006 353 1768 1.76× 10−13

−1.00005 424 2122 2.12× 10−13

−1.00004 530 2652 2.65× 10−13

−1.00003 707 3536 3.53× 10−13

−1.00002 1060 5305 5.30× 10−13

−1.00001 2120 10610 1.06× 10−12

Table 5: Values of (trip − tunbound) for −1.10000 ≤ ω ≤ −1.00001
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A4. The formula for (trip − tcaus)

After t = tunbound, objects which had been constrained in a bound system
would be free to move far apart and will end up causally disconnected starting
at time t = tcaus. Such a time, tcaus, can be defined, with c = 1 taken, by

L

a(tcaus)
=

∫ trip

tcaus

dt

a(t)
, (38)

where L denotes the length scale at which two objects separate at t = tcaus,
and the right-hand side stands for the comoving distance of light which arises
from traveling at light speed c during a time-interval tcaus < t < trip. Noting
that dt = da/(aH) and rewriting H(a) from the Friedman equation in terms
of a function of a, we calculate more explicitly the right-hand side of Eq.(38)
as follows:

L

a(tcaus)
=

∫ a(trip)

a(tcaus)

da

a2H(a)

= (H0 · Ω0
Λ)

−1

∫ ∞

a(tcaus)

da a−1/2(1−3w)

= (H0Ω
0
Λ)

−1 2

|1 + 3w| [a(tcaus)]
−|1+3w|/2 . (39)

Taking t = tcaus in Eq.(18) and dividing both sides by the resultant
expression, we can continue calculating to get

L

a(tcaus)

1

(trip − tcaus)
=

3|1 + w|
|1 + 3w|

(

[a(tcaus)]
3|1+w|

[a(tcaus)]|1+3w|

)1/2

=
3|1 + w|
|1 + 3w|

1

a(tcaus)
, (40)

and in the end we reach the expression [7]

trip − tcaus =

∣

∣

∣

∣

∣

1 + 3w

3(1 + w)

∣

∣

∣

∣

∣

L

c
. (41)

Similarly to the previous section, we take values of w in the range−1.10000 ≤
ω ≤ −1.00001 and calculate the values of (trip − tcaus) for typical bound sys-
tems such as galaxies, Sun-Earth, hydrogen atom, and summarize in Table 6.
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(trip − tcaus)
w Typical Galaxy [Myr] Sun-Earth [day] Hydrogen Atom [s]

−1.10000 0.40 0.044 1.27× 10−18

−1.09000 0.44 0.048 1.40× 10−18

−1.08000 0.49 0.054 1.55× 10−18

−1.07000 0.55 0.060 1.75× 10−18

−1.06000 0.64 0.070 2.01× 10−18

−1.05000 0.75 0.083 2.39× 10−18

−1.04000 0.93 0.102 2.94× 10−18

−1.03000 1.22 0.134 3.87× 10−18

−1.02000 1.81 0.198 5.72× 10−18

−1.01000 3.57 0.391 1.12× 10−17

−1.00900 3.96 0.434 1.25× 10−17

−1.00800 4.45 0.488 1.40× 10−17

−1.00700 5.08 0.557 1.60× 10−17

−1.00600 5.92 0.649 1.86× 10−17

−1.00500 7.09 0.777 2.24× 10−17

−1.00400 8.86 0.970 2.79× 10−17

−1.00300 11.7 1.29 3.72× 10−17

−1.00200 17.6 1.93 5.57× 10−17

−1.00100 35.2 3.86 1.11× 10−16

−1.00090 39.2 4.29 1.23× 10−16

−1.00080 44.0 4.83 1.39× 10−16

−1.00070 50.3 5.52 1.59× 10−16

−1.00060 58.7 6.44 1.85× 10−16

−1.00050 70.5 7.72 2.22× 10−16

−1.00040 88.1 9.65 2.78× 10−16

−1.00030 117 12.8 3.70× 10−16

−1.00020 176 19.3 5.56× 10−16

−1.00010 352 38.6 1.11× 10−15

−1.00009 391 42.9 1.23× 10−15

−1.00008 440 48.2 1.39× 10−15

−1.00007 503 55.1 1.58× 10−15

−1.00006 587 64.3 1.85× 10−15

−1.00005 704 77.2 2.22× 10−15

−1.00004 880 96.5 2.77× 10−15

−1.00003 1170 128 3.70× 10−15

−1.00002 1760 193 5.55× 10−15

−1.00001 3520 386 1.11× 10−14

Table 6: Values of (trip − tcaus) for −1.10000 ≤ ω ≤ −1.00001
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Appendix B

Constraint on ρC from causality

There exists a lower bound on the value of ρC coming from the causal
disconnection condition for smaller bound systems such as the hydrogen
atom and nucleon. We study here the lower bound on ρC calculating (tT −
tcaus) numerically as a function of w and ρC for each bound system with a
size<∼ 10−10m.

Imposing the condition tT > tH,N
caus where H,N denote the hydrogen atom

and nucleon, respectively, we may obtain physical constraints on η and w
from the following inequality:

(tT − tcaus)
H,N =

|1 + 3w|(LH,N/c)

3|1 + w|

[

1− 3.12× 1011.95/LH,N√
η|1 + 3w|

]

≥ 0 , (42)

which follows from Eqs.(26) and (41). In Fig 3 we show the constraints
on the model parameters η and w, coming from the causal disconnection
condition (42). Here we have taken LH = 0.5 × 10−10m, LN = 10−15m,
and [5] c = 2.9979× 108ms−1, yr = 3.1556× 107 s. From this figure, we find
a lower bound on the value of η, or equivalently on the critical density ρC ,

η >∼ 1054 ↔ ρC >
∼(109GeV)4 , (43)

where we have calculated ρC = (1.44× 10x/4−4.5GeV)4 with x = log10 η.
If we extend a similar study to a bound PPP system, for which we set

a scale LPPP ≃ 10−33m, slightly above the Planck scale, we find a stronger
lower bound on η (see the solid line illustrated in Fig. 3),

η >∼ 1090 ↔ ρC >
∼(1018GeV)4 . (44)

It is interesting to note that the result on these lower bounds is fairly
insensitive to the choice of w within the range of interest.
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Figure 3: The lower bound on η coming from the causal disconnection conditions, tT >
tHcaus (dashed line), tT > tNcaus (dashed-dotted line), tT > tPPP

caus (solid line), for 1029 ≤ η ≤
1093 and −1.10000 ≤ w ≤ −1.00001. The regions below these three lines are forbidden by
causality.

.
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Appendix C

Comes back empty condition

At t = tT we require that at deflation immediately prior to turnaround
of the cyclic universe the causal patch comes back empty which demands
that the deflation factor f satisfies f−3>∼ 10102 in order to solve the entropy
problem, since the present entropy is at least 10102 [8, 9].

This requirement can be met by imposing that one causal patch be less
than a size of the smallest bound systems, Lp(tT )

rH(tT )

Ncp
≤ Lp(tT ) , (45)

where the subscript p denotes a bound system whose size L0 at present lies
in the range 10−33m ≤ L0 ≤ 10−15m. Noting that

rH(tT ) = rH0
a(tT ) , (46)

Lp(tT ) = Lp(t0)
a(tT )

a(tunbound)
, (47)

we can rewrite the condition (45) as

a(tunbound) ≤ Ncp
Lp(t0)

rH0

. (48)

Looking at Eqs.(28), (31) and (37), we see that the left hand side of Eq.(48)
can be reexpressed as

[

√

2|1 + 3w|
4π

Pp(H0

√

Ω0
Λ)

]
2

−3|1+w|

≤ Ncp
Lp(t0)

rH0

, (49)

where period Pp, associated with a certain smaller bound system p we are
concerned with, can be expressed as Pp ≃ Lp(t0)/c.

Taking log10 log10 of Ncp makes it easier to plot the inequality (49). A
plot of the (w, log10 log10Ncp)-plane varying the value of Lp(t0) in the range
of interest, 10−33m ≤ Lp(t0) ≤ 10−15m is shown in Figure 1. We have used [5]
rH0

= 1.232× 1026m and Ω0
Λ = 0.76.
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