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Abstract

Physical modeling sound synthesis, emulating systems of a complexity approaching

and even exceeding that of real-world acoustic musical instruments, is becoming

possible, thanks to recent theoretical developments in musical acoustics and algorithm

design. Severe practical difficulties remain, both at the level of the raw computational

resources required, and at the level of user control. An approach to the first difficulty is

through the use of large-scale parallelisation, and results for a variety of physical

modeling systems are presented here. Any progress with regard to the second requires,

necessarily, the experience and advice of professional musicians. A basic interface to a

parallelised large-scale physical modeling synthesis system is presented here,
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accompanied by first-hand descriptions of the working methods of five composers, each

of whom generated complete multichannel pieces using the system.

Introduction

Physical modeling sound synthesis is, to say the least, a computationally costly

undertaking. Throughout the history of computer music, it has often been the case that,

during the development of new synthesis tools, there has been an initial phase during

which prototypes were built in specialised hardware. Often the aim was to achieve real-

or near real-time performance using relatively established synthesis methods.

Well-known examples are the Samson box at CCRMA (Samson 1980) and the 4N series

at IRCAM, leading ultimately to the IRCAM Music Workstation (Lindemann et al. 1991)

(later IRCAM Signal Processing Workstation), which ran the early signal processing

version of Max via customised DSP boards in a NeXT workstation (Puckette 1991).

In the case of physical modeling synthesis, particularly for complex systems,

computational costs can be many orders of magnitude beyond those of standard abstract

synthesis methods, and thus, for the moment, specialised hardware is again necessary.

Real-time performance was not the aim of the NESS project, but rather “reasonable"-time

performance—in order to get a glimpse of what kind of sound output is possible. Raw

acceleration has thus been one of the main goals, and a variety of approaches have been

taken, all relying on parallelisation at different scales.

Physical modeling sound synthesis algorithms for many instrument types, from

emulations of existing instruments to purely virtual constructions without a counterpart

in the real world, were developed under the NESS Project, and are detailed in the

companion article (Bilbao et al. 2019). Though most do not operate in real time, they

generate sound quickly enough to constitute a point of departure for musical

exploration, which was the second, deeper and less defined goal of NESS. New major
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issues relating to usability, interfaces and control emerge—the musician is faced with the

large task of not merely learning to play a new musical instrument, but more often than

not designing it as well. Sound synthesis in parallel hardware has been explored with

regard to standard abstract synthesis techniques (Savioja et al. 2010, 2011), as well as in

the case of physical modeling applications, particularly on graphics processing units

(GPUs) (Zhang et al. 2005; Hsu and Sosnick-Pérez 2013) and using field-programmable

gate arrays (Pfeifle and Bader 2015; Motuk et al. 2007). Alongside work on synthesis,

another major thrust was towards the development of large-scale room acoustics

simulations on GPU—here our approach intersects with that of work in virtual

acoustics, divorced from sound synthesis applications—see, e.g., Southern et al. (2010);

Mehra et al. (2012).

This article is a detailed account of the practicalities, both technical and musical,

involved in bringing physical modeling synthesis into the hands of musicians. For a

more technical view of parallel computing in physical modeling synthesis, see

Perry et al. (2015).

Physical Modeling Synthesis: Computational Complexity

Computational complexity for a physical modeling synthesis algorithm is of course

highly dependent on the particular model. One very crude measure of the complexity

follows from the required state size—i.e., the amount of memory required in order to

sufficiently represent the dynamics of a given instrument, given some perceptual

criterion. Interestingly, it is possible to provide a rather simple lower bound on such

memory requirements. To this end, consider any acoustic entity, characterised by its

material and geometry—which could be a musical instrument, or a component of one, or

perhaps even an enclosing space. Loss is usually low in any such system, and under

linear conditions, the system may be characterised by a number of natural frequencies or
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modes N (fc) below a chosen cutoff frequency fc. Each such mode behaves, individually,

as a harmonic oscillator with two degrees of freedom, and thus requires the updating of

two real numbers in memory, and thus the minimum memory requirement is 2N (fc)

real numbers (normally double-precision floating point). A synthesis algorithm using

less than this amount of memory will necessarily be discarding potentially audible

dynamics, and one using more is inefficient—often unavoidably so. In synthesis,

fc = 20000 Hz is the most usual choice of cutoff and represents a basic perceptual

criterion—the upper limit of human hearing. Although the aforementioned bound on

memory requirements follows from an analysis in terms of modes, it is actually quite

general—any synthesis method (modal, digital waveguide, FD, etc.) must respect this.

Consider first the basic case of a vibrating string, of fundamental frequency f0 Hz.

Here, N (fc) = fc/f0, which is on the order of about 10 to 500 for musical strings, which

is relatively small. At the other extreme, consider the case of a room of volume V m3,

and where the sound speed is c m· s−1. Now, N is approximately 4V f 3
c
/c3. For a

medium-sized room (V = 2000 m3), and where the speed of sound c = 343 m· s−1, then

N ≅ 109, which is very large indeed, but reasonable-time simulation is still within the

realm of possibility on specialised hardware (such as GPUs). Ranges of values of N , for a

cutoff of fc = 20000 Hz are given for a variety of acoustic objects in Figure 1. Notice in

particular the large gulf between problem sizes for 1D and 2D musical instrument

components, and for 3D modeling; parallelisation strategies for 3D modeling have a

different character, due to the problem size.

Operation counts are more dependent on the particulars of the system at hand—in

most nontrivial cases, however, the number of arithmetic operations per second, for a

system with a state size of 2N and with a sample rate of fs will scale as at least O(Nfs)

(and of course, from sampling considerations, fs ≥ 2fc). The digital waveguide is a

notable exception in this regard, requiring O(1) operations per time step—an efficiency
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Figure 1. N for various different systems in musical acoustics.

advantage linked specifically to wave propagation over 1D lossless homogeneous

media, with the ideal string and acoustic tube as examples. As will be seen, however,

actual runtimes are very much dependent on the particular implementation and the

possibility of parallelisation. More details about the relevant computational structures

appear in the following section. Furthermore, such estimates are very crude—they do

not take into account more detailed information about auditory perception, which could

be used to further reduce costs.

General Algorithm Structure and Key Operations

The majority of the time-stepping methods employed in the NESS project share

many common features across different instrument types. Though it is impossible to

describe here the complete workings of all the physical modeling sound synthesis

algorithms described here and in the companion article (Bilbao et al. 2019), an attempt is

made here to give the user some notion of the technical challenges involved, particularly

keeping in mind, from the previous discussion, that in some cases the problem size can

be very large. For a more technical presentation of the implementation of such

time-stepping methods, see (Bilbao et al. 2014).
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Representing State

As a first step towards understanding the implementation of such methods,

consider the representations of the state in typical time-stepping algorithms. Depending

on the system at hand, the state (at an integer time step n) consists of the values

representing the physical variables of the complete system. Such values could represent,

for example, the displacements and velocities of a string or membrane, defined over a

grid, or pressure and velocity values within an acoustic tube, or a combination of values

representing the state of a heterogeneous system made up of a combination of

components. See Figure 2 at left. For the purposes of the discussion below (and not

necessarily in practice!) it is useful to concatenate the entire state, at a given time step n,

as a vector un. See Figure 2 at right.

Figure 2. Left: spatial grids in 1D, 2D and 3D. Right: concatenation of a 2D grid into a vector.

Recursions

The main computational work across all the NESS code modules is the update of the

state at an audio rate—usually chosen to be 44.1 kHz or 48 kHz, although all algorithms

can produce sound output at any specified rate. At time step n, the state vector un+1

must be computed using previously computed values of the state. In virtually all

synthesis code modules, updates are “two-step": un+1 may be computed using only un

and un−1. To avoid producing an excess of computed data, once un+1 is computed, un−1

may then be discarded (or overwritten). Here, the state vector un, assembled by
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Table 1. Update Types.

Type I un+1 = Bun +Cun−1

Type II Aun+1 = Bun +Cun−1

Type III A (un,un−1)un+1 = B (un,un−1)un +C (un,un−1)un−1

Type IV g (un+1,un,un−1) = 0

concatenation, is assumed to be of size N × 1, where the total state size is 2N .

Updates take on different forms, depending on the physics of the problem at hand.

In Table 1, generic update equations of four different type are shown (labeled I through

IV). In this simplified representation, input and output operations are not included.

In the simplest case, the update step is of Type I, and requires only matrix

multiplication. This corresponds to the case of explicit finite difference schemes for

linear and time-invariant systems. The N ×N matrices B and C may be precomputed at

the setup stage, and the internal structure of these matrices follows directly from the

physics of the system. They are generally very sparse; the sparsity follows from the use

of FD approximations, according to which derivatives are approximated using

neighbouring values on a grid. This is the ideal case for a parallel implementation. See

Figure 3, illustrating typical sparsity patterns, in the case of a matrix B employing a

basic approximation to the Laplacian.

It is sometimes the case that the update corresponds to a linear system solution, as

in Type II, for a known constant N ×N matrix A. This corresponds to the case of implicit

finite difference schemes for linear and time-invariant systems. A may be precomputed

at the setup stage, but the solution to the Type II case is in general much more

problematic than that of Type I. As the size of A is potentially large, it is inadvisable to

precompute the inverse of A—though A is usually sparse, A−1 will generally not be,

and storage requirements can quickly become unmanageable for all but the smallest

systems. Depending on the particular structure of A, different approaches to linear

solution are available. Some, such as Jacobi iteration (Strikwerda 1989), are easily
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Figure 3. Top: spatial grids in 1D, 2D and 3D, showing the action of an approximation to the
Laplacian at a given location (centered at the white point, and drawing on values at neighbouring
black points). Bottom: matrix forms of the Laplacian operator. The matrices operate on a state
vector arrived at through concatenation, as illustrated in Figure 2.

parallelisable, but require additional conditions on A (such as diagonal dominance),

which are not always satisfied. In the worst case, standard general methods, perhaps

targeted towards sparse systems (Saad 2003), may be necessary.

In some cases involving nonlinearities of geometric type (such as those occurring in

the case of gong vibration, or string vibration at high amplitudes, updates of Type III are

necessary. Now the matrices A, B and C are dependent on the previously computed

state un, and thus cannot be precomputed. This leads to extra computational cost during

the execution of the runtime loop; usually, though, A remains sparse, and the linear

system solution may be carried out as for systems of Type II.

The most general case is that of an update of the form of Type IV for a known

nonlinear vector-valued function g. This arises when nonlinearities of more complex

form are present, as in the case of collisions (in, e.g., the string-fretboard interaction, or
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for the mallet/membrane interaction). In this case, except for in highly pathological

situations, iterative methods (such as, e.g., the Newton-Raphson method (Press et al.

1992)) are usually required, and opportunities for parallelisation are very limited.

In practice, for realistic and complex musical instrument designs, the update is often

a mixture of the forms above. More precisely, it is often possible to partition the state un

into subvectors, over which updates of different types are performed. Such a partition

follows naturally from the physics of the problem under consideration. For example, in

the case of the 3D model of the snare drum, updating of the acoustic field is of Type I;

that of the membrane of Type II; and that of the snares themselves of Type IV, due to the

highly nonlinear collision mechanism.

Inputs and Outputs

Inputs and outputs to the synthesis algorithms, obviously essential for any

meaningful musical work, have been not been described above. In general, in physical

modeling synthesis, the excitation mechanism driving a given instrument design will be

nonlinearly coupled to the instrument dynamics—this is the case, e.g., for all of the

standard playing modes (bowing, striking, plucking, blowing). The case of output is

simpler—generally, values may be drawn from the appropriate location in the state, as it

evolves, in the manner of a pickup or microphone. In the NESS code, simultaneous

multiple inputs and outputs are possible; as a result, these synthesis methods are geared

towards multichannel composition, and became a large influence on the mode of work

of the associated musicians, and the ultimate forms that their compositions took, as

described later.

Under greatly simplified conditions, the entire input/output system may be viewed

in a form resembling a state space form (Kailath 1980). For example, considering the case

of the simple linear form given as Type I above, an extension to incorporate I/O may be
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written as

un+1 = Bun +Cun−1 + Jiw
n yn = Jou

n (1)

Here, subscripts i and o refer to input and output, respectively. wn is an Ni × 1 vector

input vector consisting of a set of Ni independent input signals at time step n; Ji is an

N ×Ni matrix, each column of which specifies the grid point or set of grid points to

which the input will be added. Similarly, yn is an No × 1 vector of output signals, and Jo

is an No ×N matrix, each row of which selects a particular set of grid points in the

physical model from which output will be drawn (with scaling included).

Generally, the computational cost of input and output operations is very small

compared to the raw calculation which must be carried out over the entirety of the

computational grid. Extensions to the time-varying case are possible as well—input

locations can be variable (as in, e.g., the case of bowing or finger-stopping in the guitar).

Synthesis Environments

A variety of distinct environments developed over the course of the NESS project,

based around the investigations of different instrument families described in the

companion article (Bilbao et al. 2019). Acceleration strategies depend highly on the

particular system, and are described subsequently, but all environments have ultimately

been made available to musicians through a web interface.

The zero code, developed in 2013, was the first attempt at a large-scale modular

synthesis network. The basic units are plates, of dimensions and material properties as

specified by the user. Connections between objects are point-like, and behave as

nonlinear mass/spring/damper systems, where the nonlinearity is of cubic type. This

restriction to cubic nonlinearities eases computational requirements considerably, as it is

possible to develop stable algorithms of Type III, where the linear system to be solved is
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diagonal (thus requiring simple scalar divisions in the run-time loop). Input can be

specified through a list of events, each of which corresponds, roughly, to a strike at a

given location on a given object at a given time, and of a given force. Each such event is

translated, ultimately, into a short force signal fed into the network. Other input types

are a bowing gesture, described through a breakpoint function for bow force, velocity

and position, and also audio input, if the network is to be used as an effect (emulating,

e.g., plate reverberation). Multichannel output may be obtained by reading velocities at

a set of locations throughout the network, with the option for the normalisation of

individual channels in the case that output amplitudes are widely disparate. These

modular environments are described in Bilbao (2009).

The brass code, developed in 2013/14 allows for the flexible construction of brass and

brass-like instruments, of arbitrary bore profile and valve configurations; control is

through mouth pressure and lip stiffness, as well as a set of control signals representing

valve positions. Because of its very fast execution time (several times faster than real

time) it has been a very popular choice among composers, and extensively explored.

Part of the reason for the fast execution time is the relatively small state size (for

reasonable sized instruments, and at an audio rate, N is on the order of 100 to 400), but

another is that a Type I explicit update is used for the bulk of the calculation. Control is

of a different type from that used in the zero code, in that continuous data streams are

necessary, rather than a discrete list of events. Breakpoint functions (piecewise linear

here, but easily generalised) are used in order to specify such control streams. The

complete brass synthesis environment is described in Harrison et al. (2015).

The single- and double-membrane drum code and the gong code were developed

between 2013 and 2015. They incorporate many realistic features, including

membrane/plate nonlinearity, mallet interactions, snares, and are ultimately embedded

in 3D, allowing for spatialised sound output. This was the closest approach to fully
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virtual musical instruments, in that it is possible to embed multiple instruments within a

potentially large space. The calculation is very large, however, as it relies on updates of

Types I, II, III and IV simultaneously; and for very large state sizes, it is relatively slow

(taking minutes to calculate several seconds of output), which makes this approach

harder to explore musically. As in the case of the zero code, input is specified through

strike forces and locations over multiple objects. In contrast, however, full multichannel

output may be drawn from the 3D acoustic field simulation. Such virtual percussion

instruments are described in Torin et al. (2014); Bilbao and Webb (2013).

The guitar code was developed in 2014/15, and was perhaps the most elaborate

instrument attempted in terms of control. The user specifies string parameters, such as

tension, length, stiffness and T60 times for N strings. In addition, the user supplies a

common backboard profile, against which strings will collide, as well as the positions of

frets (as many as desired). The user must further specify the properties of fingers which

will interact with the instrument, and in particular their masses and stiffnesses. From the

control point of view, breakpoint functions are used to specify the positions of the

fingers along the length of the string, as well as the forces exerted by the player on each

string over time. In addition, the user also specifies plucking or striking events along the

string. The guitar environment is described in Bilbao and Torin (2015).

Net1 was the last modular code developed, in 2016. It differs from the zero code in

that plates are not included, and that bar and string behaviour are both unified into a

single model, and thus the model can behave as a string or percussion instrument. In

addition, nonlinear connections are of a very different type, allowing for intermittent

loss of contact of a type reminiscent of a rattle, and leading to a much larger variety of

timbres. I/O is much the same as in the case of the zero code. Due to the form of the

nonlinearity, iterative methods of Type IV are required, leading to much slower runtimes

than in the case of the zero code.
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Acceleration in Parallel Hardware

Acceleration in parallel hardware proved to be a significant challenge, and various

different methods were combined in order to achieve good performance. In all cases,

prototyping was carried out in Matlab. The next step was to port the code to generic

C++, as a starting point for further experimentation with parallelisation techniques. All

of the models were ported into a common code framework so that useful generic

functionality could be shared among them.

The appropriate strategies for speeding up a given piece of code are dependent not

only on the code itself, but also on the target hardware: large scale supercomputers and

clusters demand a different approach from desktop computers and smaller servers. The

optimised NESS code was targeted primarily at multicore Intel Xeon servers with

multiple NVIDIA Tesla GPU cards, since it was used to run the NESS service for the

composers, but it was also designed with portability in mind and can run on most

Windows, Mac and Linux machines. See Figure 4.

Figure 4. GPU server architecture.
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Multicore

One form of parallelism that is almost ubiquitous in computers of all sizes today,

and that is conceptually quite simple, is multicore. Modern CPUs contain multiple cores,

each of which can be running an independent thread of program execution at the same

time. These cores share a single memory space, so the program threads can operate on

the same data, though care must be taken to ensure synchronisation and that the threads

do not interfere with each other.

This type of parallelism raises the question of how best to divide up the program’s

work between the various threads. Two different approaches were tested for the NESS

code modules:

Assigning each distinct component of the simulation to its own thread. For example,

when running the net1 code, each string, bar and connection is processed on a

separate thread. In the case where the components outnumber the available CPU

cores, each thread may have to process multiple components in sequence.

Decomposing the domain of the simulation across multiple threads. For example, in the

case of a membrane with 1000 elements, the first 500 elements could be updated on

one thread while the last 500 are simultaneously updated on another.

The first approach was adopted as it had two major advantages: firstly, it is very

simple to implement and requires minimal communication among the threads, since

each thread is working on a mostly self-contained entity; and secondly, since the

component update itself is unchanged from the serial case, it works with any algorithm.

In contrast, method 2 requires changes within the update code, which adds complexity

and is difficult to do efficiently for implicit or non-linear (Type II, III and IV) updates.

The main disadvantage of the chosen method is that it is useless for simulations that

cannot be broken down into multiple components, but these are generally either
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lightweight enough to run fast even on a single core (brass instruments, for example), or

are large room simulations that are better run exclusively on GPUs (as discussed later).

The standard for high performance multithreaded code is OpenMP

(Dagum and Menon 1998), a directives-based framework that allows work to be easily

shared across multiple threads in a shared memory environment. Unfortunately this

was found to be unsuitable for the NESS code; OpenMP imposes a certain overhead at

each simulation timestep, and this overhead becomes problematic due to the large

number of timesteps required when working at audio rate. We created a simple

threading framework, which on Windows uses Win32 threads and on Linux and macOS

uses the low-level thread libraries (Butenhof 1997) provided by the operating system.

This provided full control over the behaviour of the threads, allowing them to be kept in

a state where they could respond instantaneously when needed.

In the best-case scenario, the performance of a multicore code scales with the

number of CPU cores available. In practice this is rarely achieved due to synchronisation

overheads and imbalances between the work assigned to each thread, but due to the

minimal inter-thread communication required, the NESS multicore code does approach

the best-case scaling in certain cases.

Vectorisation

Modern CPUs also provide opportunities for finer grained parallelism within each

CPU core. While a traditional machine instruction (the most basic building block of all

computer programs) performs a single calculation, a vector instruction can perform

multiple calculations simultaneously. For example, the SSE2 (Raman et al. 2000) vector

instructions, present on all 64-bit Intel and AMD CPUs, can perform two double

precision or four single precision floating point calculations at once, and the more

advanced AVX (Firasta et al. 2008) instructions extend this to four double precision or
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eight single precision operations. See Figure 5.

Figure 5. Scalar and vector addition.

This is extremely useful for looping through an array of numbers and applying the

same operation to all of them, a pattern which occurs frequently in the NESS simulations

(especially Type I updates, but also when computing the matrices in Type III). Modern

compilers can sometimes vectorise such code automatically. Vector instructions can also

be used to speed up more complex operations, but this takes more manual effort,

typically requiring the use of compiler intrinsics (special functions that translate directly

into specific machine instructions).

A 4-element vector operation will be at most four times faster than the equivalent

scalar operations, but often this upper performance bound cannot be reached in practice

due to memory bandwidth or other limitations. For NESS, AVX instructions were used

extensively in the main state update of the brass code, giving a 2.5x speed up over the

serial C++ code and allowing many instruments to be simulated faster than real time.

The triangular solve operation used in the preconditioner of the linear system solve used

in the type III updates was vectorised using SSE, again giving an approximate speed up

of 2.5x over the original C++ version. (In this case SSE was actually faster than AVX due

to technical limitations of the AVX instruction set).
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GPU acceleration

Graphics processing units were originally designed for rendering real time graphics

for games, but in recent years there has been much interest in exploiting them for other

purposes, and GPU vendors provide tools like NVIDIA’s CUDA (Nickolls et al. 2008)

and the open standard OpenCL to facilitate this. GPUs are essentially massively parallel

processors containing hundreds or even thousands of cores, though each individual core

is very primitive and slow compared to a traditional CPU core.

Because the power of GPUs comes from their extreme parallelism, they are best

suited to algorithms with large numbers of operations that can be performed

simultaneously, and much weaker for running sequential code. In addition, they

typically have their own memory space and are separated from the rest of the computer

system by a relatively slow PCI Express bus; care is required to design code modules in

such a way that not too much data needs to be transferred between CPU and GPU.

GPUs are therefore well suited to running the NESS algorithms that perform a

relatively simple linear operation (Type I update) across a large domain—either a

three-dimensional room or a large two-dimensional plate or membrane.

One-dimensional and smaller two-dimensional entities are generally too small to benefit

from GPU acceleration, and the more complex updates (Types III and IV) require too

many sequential computations on a single thread Bilbao et al. (2013); Perry et al. (2015).

A flexible approach was taken in the NESS framework, allowing all simulation

components to take advantage of the GPUs if beneficial, or to remain on the CPU if not.

Additionally, GPU versions of most of the input, output and modular interconnection

algorithms were provided, allowing these operations to be performed directly on the

GPU when required, instead of avoid having to run them on the CPU and then copy the

resulting data across the slow PCI bus.
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Although the effort involved in porting code to CUDA is relatively high, the

performance gains can be significant. For example, updating the acoustic field

surrounding the bass drum is roughly six times faster on the GPU than it is on the CPU

(Perry et al. 2015).

Algorithm Tuning and Optimisation

In addition to the parallelisation methods already described, some NESS code was

sped up significantly using other optimisations. One example was the Newton-Raphson

solver used in the guitar code to simulate collisions between strings and other items. In

its original form this involves solving a relatively large, sparse linear system, which can

be a time-consuming operation. However, in most cases this can be converted to a much

smaller dense linear system by rank reduction. This small dense system (containing

typically less than 20 unknowns) can then be solved very quickly by direct factorisation.

In addition, most of the NESS code makes extensive use of sparse matrix and vector

operations such as multiplications and additions. In the general case these operations

can be expensive as they need to cater to every possible type of matrix, but they can

often be sped up dramatically by using an algorithm and matrix storage format more

suited to the specific matrices involved. For example, the generation of matrices in the

Type III algorithm originally used generic operations and compressed sparse row matrix

storage. This was replaced by a custom banded matrix format and specialised

operations, often combining multiple operations into a single step so that intermediate

results did not have to be written to memory and later read back again. The overall

effect was to speed up this part of the algorithm by a factor of 10.

A dramatic speed up (around 300 times) was obtained for the bowed string code by

replacing a simple linear search of a table with a more sophisticated algorithm that did a

binary search on a sorted version of the table and then mapped the results back onto the

18



original table.

Acceleration Summary

As described above, the various optimisation methods all have their strengths and

weaknesses and are better suited to some algorithms than others. Most of the NESS code

was optimised using one or two of these methods; however, the bass drum code and

gong code were more challenging and required a hybrid approach making use of all four

methods. The simulation of the surrounding acoustic field is GPU-accelerated; the plates

and membranes each run on their own CPU core; some elements of the plate and

membrane code are vectorised with SSE2; and extensive algorithmic changes were

implemented to speed up sparse matrix generation. The software framework developed

for NESS makes it relatively easy to combine all these disparate methods, and the end

result is a 60-80 times speed up over the original Matlab version for typical instruments.

For example, in the case of the bass drum, for typical choices of parameters, simply

porting the code from Matlab to C++ sped it up by roughly 5.9 times. This was then

further improved with speed-ups of 2.4 times for multicore, 2.3 times for CUDA, 1.8

times for algorithmic changes and 1.2 times for vectorisation, leading to an over-all

speedup of 70.3 times.

Table 2 shows the methods used to optimise the code for each instrument, and the

rough overall speed up of the final optimised C++ code compared with the original

Matlab.

User Control

Since most of the synthesis algorithms developed under the NESS project were

slower than real time, there were no attempts at a sophisticated graphical interface.

Rather, work on the control side was at the lower level of determining usable parameter
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Table 2. Acceleration relative to a single-core Matlab implementation.

Code Multicore Vectorisation GPU Algorithm Tuning Speedup

Brass X 15×

Bowed String X X 300×

Guitar X X 21×

Bass Drum X X X X 60-80×

Zero Code X X 25×

Net1 X X 20×

sets which could be approached by a non-expert. From an early stage, it was decided to

adopt the score/instrument breakdown of user-supplied input data, which has been

standard across various iterations of MUSIC N synthesis environments.

Instrument and Score Files

The NESS synthesis system accepts an instrument file and a score file as input, and

also possibly audio input, if the synthesis algorithm is to be used as an effect. In Figure 6

below, a rudimentary instrument/score file pair is shown, in the case of the zero code

modular plate synthesis network. The instrument file specifies the sample rate, as well

as the parameter sets defining a set of thin metal plates, as well as connection elements,

linking two plates together (or a plate to itself). For a tensioned rectangular plate, for

example, the parameters are the material, thickness, tension, dimensions, as well as

specifications of 60 dB decay time at DC and 1 kHz, and an integer value specifying the

type of boundary condition (in this case, clamped, simply supported or free). For a

connection, the parameters are the coordinates with respect to two different plates, as

well as a linear and nonlinear stiffness parameters, and an additional 60 dB decay time

for the connection itself (realised as a damper). Outputs are also defined, with reference

to coordinates on the plates. The score specifies the total duration of the simulation, and

also strike events, as well as a bowing gesture. Audio input is also an option.
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Instrument File

# zcversion 0

# set 44100Hz sampling rate

samplerate 44100

# Define two steel plates. Arguments:

# <name> <material> <thickness> <tension> <X> <Y> <T60@0Hz> <T60@1kHz> <boundarytype>

plate plat1 steel 0.001 0.0 0.4 0.7 11.0 6.0 4

plate plat2 gold 0.001 0.0 0.3 0.6 10.0 6.0 4

# Define a connection from one point on the plate to another on this or a different plate. Arguments:

# <component> <component> <X1> <Y1> <X2> <Y2> <linearstiffness> <nonlinearstiffness> <T60>

connection plat1 plat2 0.7 0.4 0.3 0.7 10000.0 10000000.0 1000000.0

connection plat1 plat1 0.2 0.3 0.5 0.5 10000.0 10000000.0 1000000.0

# Define two outputs from the two plates. Arguments:

# <component> <X> <Y> <pan>

output plat1 0.6 0.6 -1.0

output plat2 0.3 0.7 1.0

Score File

highpass off # no high-pass filter

duration 1.0 # one second simulation

# Define two strikes. Arguments:

# <starttime> <component> <X> <Y> <duration> <amplitude>

strike 0.0 plat1 0.4 0.7 0.002 400000.0

strike 0.0 plat2 0.3 0.6 0.001 100000.0

# Define a bowing action. Arguments:

# <starttime> <component> <X> <Y> <duration> <forceamp> <velocityamp> <friction> <ramptime>

bow 0.3 plat1 0.3 0.9 4.0 2.3 2.8 1.1 0.02

# Define an audio input. Arguments:

# <file> <starttime> <component> <X> <Y> <gain>

audio drumming.wav 0.1 plat1 0.2 0.4 1.0

Figure 6. Instrument and score files for the zero code modular plate environment.

Web-based Interface

A simple web-based user interface was created to allow the composers to access the

NESS service through a standard web browser. It consists of a form allowing the user to

upload an instrument file, a score file and an optional audio input file and then launch

the NESS code on the GPU server. A demo mode is supported for most code modules;

this runs a lower sample rate simulation to give the user an impression of how their

submission will sound, but generally completes much faster than a full quality run. The

synthesis environment to run is selected via a comment in the instrument file. After the

job completes, the user is able to download the generated audio outputs (individual
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mono channels as well as a stereo mix file) as .wav files.

Musical Experimentation

An integral part of the NESS project was collaborative work with electroacoustic

composers, which commenced approximately 18 months into the project. All work was

carried out in a 16 channel space, during intensive workshops with the NESS team. In

most cases, the musicians worked directly through the web-based interface to the GPU

server. As described in the previous sections, the interface itself is quite raw—there were

thus many opportunities for musicians to develop their own approaches to instrument

design, writing sufficiently interesting and complex scores, and handling multichannel

output. Approximately 10 complete works resulted, whose numbers of channels ranged

from 8 to 32. In this section, a variety of composers provide their own insights into the

experience of working with the NESS system. They are arranged approximately

chronologically, and cover the period from 2013 to 2019.

Gordon Delap: Ashes to Ashes (2013)

In Ashes to Ashes, instruments were assigned certain physical properties of uranium.

Perhaps understandably, this choice was received with some degree of skepticism,

although the assignment of parameters relating to radioactive elements was intended

principally as a conceptual starting-point. More fundamentally, the work was conceived

of as a reflection on life and death. It was also envisaged that the instruments would

display behaviours of real-world objects while exhibiting surreal qualities, although this

aspect usually had more to do with non-traditional topologies than material

specifications.

A vital concern was the investigation of compositional applications of the

technology. It seemed appropriate, then, to set constraints:
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Modification of audio output via post-processing techniques was not permitted

Sound materials generated via external means could not be used, except where such sounds

were processed by being fed through one of the NESS project’s models

These constraints presented challenges. Firstly, the generation of audio took an

extremely long time in the early stages of the NESS project. Overnight processing for

instruments with large dimensions was not unusual, while fine-tuning of instruments

was often difficult. Secondly, the composition of electroacoustic music typically allows

for the deployment of a vast and powerful armory of digital signal processing

techniques. Such techniques have been developed and refined over decades of

experimentation and investigation. However, these methods could only have been

accessed at the expense of overshadowing unmanipulated output from the models.

From the outset, there was an awareness of the types of raw sound output that

might be expected. For instance, idiophones and membranophones were readily

obtainable. Blown brass-type instrument were also under development at the time.

Ashes to Ashes was especially influenced by the ritual music of Tibet. It seemed that

many aspects of this soundworld lay within the capabilities of the physical models

under development, although the composition is not reducible to this concern.

Learning how to play the brass instrument models was difficult. Embouchure

parameters called for precision. Much to the credit of the model’s accuracy, when this

principle was violated, the outcomes sounded every bit as deficient as those produced in

real life by unskilled brass players.

Trevor Wishart: Dithyramb-Kepler 63c (2014)

The work The Secret Resonance of Things attempts to derive music from scientific data

of various kinds (the spectra of supernova, the onset of turbulent flow, and so on).
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Dithyramb-Kepler 63c, the 3rd movement, uses the NESS physical modelling software to

conjure up a musical celebration on an earth-like planet using alien instruments and an

“unknown" musical style. I used semi-random sets of values as input to the NESS

models of both brass and plates, searching, initially haphazardly, for sonically

interesting outputs. I wanted a rich sonic palette of brass instrument articulations and

various different percussives (wood-like, clunk-metal-like, marimba-like etc) to create

my alien ensemble. Having found sonorities and articulations that I liked, I explored

small adjustments to the parameter values to uncover sets of closely related sounds

(which might conceivably have come from the same instrument, and player). Using the

Composers’ Desktop Project tools to adjust pitch, layer and otherwise expand the

sounds, I was able to compose lines of complex and plausible instrumental music. The

streams from these various “players" were spatialised in 8-channel sound-surround to

create the illusion of an encircling ensemble. Such spatialisation particularly animates

the rhythmic percussive sequences in the piece. As often in my compositional history, I

developed the software interface (to allow brass-profiles to be directly drawn, rather

than entered numerically) only after I had completed the piece!

Gadi Sassoon: Multiverse (2016–2018)

My investigation of the NESS algorithms (Guitar, Net1 and Brass) revolves around

their application for music production and their integration with analogue synthesis and

acoustic instruments. Through the NESS physical models I was able to explore a space

that weaves in and out of realism and abstraction, seeking to develop a textural bridge

between synthesisers and orchestral instruments in pursuit of a cinematic sound that

blurs the edges between synthetic and organic.

To that end I have explored the parameter space’s fringe areas of operation: with

some experimentation the models allow for the rendering of instruments designed with

impossible physics (e.g. gigantic brass instruments blown with very hot air, needle-thin
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fingers with no loss gently rattling against a string’s harmonic on a fret, or lattices of

bound masses infinitely vibrating). The non-linearities of the systems provide

exceptional detail and help maintain quasi-mechanical semblance even in otherworldly

simulations. The ability to sample some models in more than one location makes for

compelling multichannel output, allowing gestures ranging from short bursts to

complex immersive soundscapes.

Interacting with NESS has pushed me to develop new sonic vocabulary: the

unconstrained nature of a research-oriented system presented unique challenges,

requiring creative solutions which in turn prompted previously unimagined musical

ideas. The result of our collaboration is my Multiverse album, comprising pieces (such

as Collision Suite and Black Hole Fanfare) entirely made from code output, and others

(like Life On A Tidally-Locked Planet and Order And Chaos) which are a combination of

NESS output, modular synthesisers and live strings.All the pieces have both stereo and

8-channel mixes: they have been performed at IRCAM, CCRMA, NIME 2018 and Music

Tech Festival 2018; a Multiverse Immersive installation will be unveiled at Sonar 2019

using interactive sculptures, head tracking headphones and the Traverse platform.

Samson Young: Possible Music #1 (2018)

I visited Edinburgh to work with NESS twice for this research, briefly in the

summer of 2017 and then again for a 2.5 weeks in November of the same year. My

collaboration with the NESS project resulted in a new commission at the Guggenheim

Museum in New York city, titled Possible Music #1 (feat. NESS and Shane Aspegren),

which was on view at the museum from May to October of 2018, and has since become a

part of Guggenheim’s collection.

Using the NESS software, I created a series of musical compositions that are

sometimes enriched with human vocals. These arrangements are activated according to
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a precise schedule that references the use of bugle calls in the military to signal orders

and events. Using old and new sounds to collapse temporal and spatial divides, my aim

was to interrogate our search for truth, and music’s unsung role in shaping the birth and

progress of civilization.

For this work, I first created a few dozen brass instruments with the NESS software.

I designed a Pure Data patch to help me generate score files. In this PD patch I am able

to draw various musical parameters in a graphical interface, which allowed me to work

visually and intuitively with the code. This process resulted in a large database of short

mono samples, each ranging from 15 to 30 seconds long. In a sequencer, these short

samples are combined into longer compositions that are each 1 to 1.5 minutes in length.

Each composition is consisted of 6 to 10 channels of sound. Finally these compositions

are spatialized in a 10.1 channels speaker array setup, through a custom-built

MAX/MSP patch.

Tom Mudd: Brass Cultures and Three Algorithms for Hans Reichel

(2018–2019)

I have been using the NESS brass model since 2015, and the guitar model since late

2017. The material has been used for performances at Café Oto in London in 2017 and

2019, and at Saint Cecilia’s Hall in Edinburgh in 2018.

The simple text-based score and instrument format used in the NESS interface

makes it relatively easy to create algorithms that generate both score and instrument

files. Multiple scores and instruments can be created by the same algorithm, allowing

different instruments to be played in a coordinated fashion.

Each piece for the Brass Cultures project was created with a Python script that

generates scores and instruments. Score parameters were generated according to a
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variety of rules: creating lip frequency sequences from pre-defined sets, choosing breath

pressures in certain ranges, with defined envelopes, creating different rules for difference

sections of each piece, and different rules for the timings of each section, and so on.

As part of the work Three Algorithms for Hans Reichel with the guitar model, a

converter was implemented in JavaScript that takes plain text guitar tab as input and

creates NESS-formatted score files as shown in Fig. 7. For physical modeling, tablature is

a more appropriate score mechanism than other input options such as MIDI, as it

denotes the specific finger placements explicitly rather than allowing the performer to

decide how to assign individual notes to the guitar strings. Guitar tab displays a row for

each string and uses numbers to denote which fret to place a finger on (the finger

number being unspecified). Duration is indicated using hyphens; for example, the

following 4/4 measure of tab for one string shows the first, fourth, and fifth notes being

held for twice as long as the second and third notes: | 5—5-4-5—0— |.

While the tablature converter can be used to render slightly mechanical versions of

existing pieces, it can also be used as a rapid way to create simple structures and

patterns for use with unconventional string instruments that may or may not yield

obviously pitched results.

Concluding Remarks and Perspectives

The NESS project was intended as an opportunity to step back from the constraints

of real time performance, in order to fully come to grips with the entire physical

modeling “production chain," from basic algorithm design to implementation and

musical use. Indeed, given the computational demands of this type of physical modeling

synthesis, and the unknown territory of algorithm parallelisation, it seemed appropriate

to use this “offline" research model—which was inspired, perhaps subliminally, by the

classic working methods at Bell Labs in the 1950s and 1960s.
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Figure 7. Diagrammatic structure of a tablature converter for the guitar code.

But the real time challenge remains—and real time performance is what the

majority of musicians ultimately want. A small subset of the algorithms presented here

can operate faster than real time, and in particular the brass synthesis environment. In

other cases, it is fairly clear that real time performance will not be possible for the

foreseeable future—examples are 2D instruments such as gongs and drums, where the

strong nonlinearity forces a choice of algorithm design which is not easily parallelisable,

and full 3D room acoustics simulation, which, though algorithmically simpler, is a

problem of a vast scale. Modular designs are inherently scalable, and are a good choice

for real-time operation. The first modular physical modeling synthesis system, Derailer,

was released as a plugin by Physical Audio in 2018 (Webb 2019), and more advanced

models are in various stages of porting from the NESS code modules.

Beyond the question of raw computation time, instrument design and control

remain difficult problems, which is not unexpected, given the history of musical

instrument design and performance—building an instrument, and learning to play it has

always required an inordinate amount of patience and labour. A relatively low-level

mode of design and control (instrument and score files) was the point of departure in
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joint work with musicians—intended to allow freedom of exploration of the resulting

soundspace, and, more importantly, not to over-constrain it. Any instrument should

probably be hard to build and learn to play if it is ever to produce musically-interesting

sound—but hard within reason.

At this point, though, where creative concerns become central, the engineer’s role

must recede into the background—and this was exactly our approach. Each musician we

have worked with has approached the instrument design and control issue in a distinct

way, and in some cases has built higher-level working tools in order to intuitively

generate instruments and scores. Ultimately, it is these individual approaches to design

and control that give each completed piece of work its distinctive sound—and are

perhaps a further step towards the mature use of physical modeling sound synthesis.
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