12,816 research outputs found
Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications
We present the design and the circuit details of a high-sensitivity microwave
vector detection system, which is aiming for studying the low-dimensional
electron system embedded in the slots of a coplanar waveguide at low
temperatures. The coplanar waveguide sample is placed inside a phase-locked
loop; the phase change of the sample may cause a corresponding change in the
operation frequency, which can be measured precisely. We also employ a
double-pulse modulation on the microwave signals, which comprises a fast pulse
modulation for gated averaging and a slow pulse modulation for lock-in
detection. In measurements on real samples at low temperatures, this system
provides much better resolutions in both amplitude and phase than most of the
conventional vector analyzers at power levels below -65 dBm.Comment: 7 pages, 11 figures, 1 table, lette
Knowledge exchange in networked organizations: does place matter?
While many studies of knowledge exchange have been undertaken in private and service organizations, government and R&D enterprises, few have studied scientific inter-organizational collaborations. Furthermore, in the literature on international networks there has been a tendency to assume that knowledge exchange will be inevitably enhanced by global dispersion. Two linked dynamics deserving further study are the role of geographic proximity and the role of information and communication technologies in facilitating knowledge flow across international networks. Studies of intra- and inter-firm knowledge transfer, managerial work values and cultural norms all point to China as being a fascinating counterpoint for the way knowledge exchange might occur in Europe. So in this study of the ATLAS collaboration, a ‘big science’ global network of 3,500 physicists, we explore the perceptions of two subgroups: UK physicists working in Europe and Chinese scientists based in Beijing and HeFei. Findings from 24 interviews and non-participant observation reveal that face-to-face working at European Organization for Nuclear Research (Geneva) is not without its difficulties, but for a variety of sociocultural reasons, it is primarily the Chinese scientists who perceive themselves to be inhibited from full participation in effective knowledge exchange
Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature
Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature
Hamiltonian and measuring time for analog quantum search
We derive in this study a Hamiltonian to solve with certainty the analog
quantum search problem analogue to the Grover algorithm. The general form of
the initial state is considered. Since the evaluation of the measuring time for
finding the marked state by probability of unity is crucially important in the
problem, especially when the Bohr frequency is high, we then give the exact
formula as a function of all given parameters for the measuring time.Comment: 5 page
Phosphorylation of Spinophilin Modulates Its Interaction with Actin Filaments
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI
176P/LINEAR is a member of the new cometary class known as main-belt comets
(MBCs). It displayed cometary activity shortly during its 2005 perihelion
passage that may be driven by the sublimation of sub-surface ices. We have
therefore searched for emission of the H2O 110-101 ground state rotational line
at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far
Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011,
about 40 days after its most recent perihelion passage, when the object was at
a heliocentric distance of 2.58 AU. No H2O line emission was detected in our
observations, from which we derive sensitive 3-sigma upper limits for the water
production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2},
respectively. From the peak brightness measured during the object's active
period in 2005, this upper limit is lower than predicted by the relation
between production rates and visual magnitudes observed for a sample of comets
by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was
likely less active at the time of our observation than during its previous
perihelion passage. The retrieved upper limit is lower than most values derived
for the H2O production rate from the spectroscopic search for CN emission in
MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
- …