405 research outputs found

    Media composition influences yeast one- and two-hybrid results

    Get PDF
    Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments

    Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes

    Get PDF
    Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death. Evodiamine (Evo) is extracted from Evodia rutaecarpa Bentham, a plant widely used in Chinese herbal medicine, which possesses variable biological abilities, such as anticancer, anti-inflammation, antiobesity, anti-Alzheimer’s disease, antimetastatic, antianoxic, and antinociceptive functions. But the effect of Evo on ischemic stroke is unclear. Increasing data suggest that activation of autophagy, an adaptive response to environmental stresses, could protect neurons from ischemia-induced cell death. In this study, we found that Evo induced autophagy in U87-MG astrocytes. A scavenger of extracellular calcium and an antagonist of transient receptor potential vanilloid-1 (TRPV-1) decreased the percentage of autophagy accompanied by an increase in apoptosis, suggesting that Evo may induce calcium-mediated protective autophagy resulting from an influx of extracellular calcium. The same phenomena were also confirmed by a small interfering RNA technique to knock down the expression of TRPV1. Finally, Evo-induced c-Jun N-terminal kinases (JNK) activation was reduced by a TRPV1 antagonist, indicating that Evo-induced autophagy may occur through a calcium/c-Jun N-terminal kinase (JNK) pathway. Collectively, Evo induced an influx of extracellular calcium, which led to JNK-mediated protective autophagy, and this provides a new option for ischemic stroke treatment

    Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery

    Get PDF
    BACKGROUND: Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS: Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS: The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION: Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B.B.), NIH Cancer Core Grant CA034194 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.)

    The genome sequence of the orchid Phalaenopsis equestris

    Get PDF
    Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur
    corecore