
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2018-12 

Ectopic high endothelial venules in pancreatic ductal Ectopic high endothelial venules in pancreatic ductal 

adenocarcinoma: A unique site for targeted delivery adenocarcinoma: A unique site for targeted delivery 

Baharak Bahmani 
Harvard Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Medicinal Chemistry and Pharmaceutics Commons, Nanomedicine Commons, Neoplasms 

Commons, and the Therapeutics Commons 

Repository Citation Repository Citation 
Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichimura T, Kasinath V, Eskandari SK, Annabi 
N, Bromberg JS, Shultz LD, Greiner DL, Abdi R. (2018). Ectopic high endothelial venules in pancreatic 
ductal adenocarcinoma: A unique site for targeted delivery. Open Access Articles. https://doi.org/
10.1016/j.ebiom.2018.11.030. Retrieved from https://escholarship.umassmed.edu/oapubs/3666 

Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/65?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1252?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/993?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.ebiom.2018.11.030
https://doi.org/10.1016/j.ebiom.2018.11.030
https://escholarship.umassmed.edu/oapubs/3666?utm_source=escholarship.umassmed.edu%2Foapubs%2F3666&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lisa.Palmer@umassmed.edu


Research paper
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Background: Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by en-
hancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in
lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral
node addressin (PNAd), which is recognized by the monoclonal antibody MECA79.
Methods: Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC).
We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC.
Findings: The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a human-
ized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented
the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was asso-
ciated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor.
Interpretation: Targeting the HEVs of PDAC usingMECA79-NPs could lay the ground for the localized delivery of a
wide variety of drugs including chemotherapeutic agents.
Fund:National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.),
National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) belongs to a lethal family
of cancers [1,2], and it is estimated to become the secondmost common
cause of cancer deaths by 2030 [3]. Although advanced surgical tech-
niques, combinational chemotherapeutic agents, and adjuvant thera-
pies have been employed to tackle this deadly disease, the overall
prognosis of PDAC has remained unsatisfactory [4]. Nearly 80% of
PDAC patients have an unresectable tumor at the time of diagnosis [2],
and these patients experience a five-year survival of about 8% for all
stages combined [5]. Among several obstacles that have plagued prog-
ress toward an effective therapy, an important factor hindering the

penetration of chemotherapy drugs has been poor vascularization asso-
ciated with the dense tumor tissuemicroenvironment [6–8]. One of the
key features of PDAC is over-production of extracellularmatrix fibers by
pancreatic stellate cells, referred to as a desmoplastic reaction, which
can result in a fibrotic and hypo-vascular environment that contributes
to low drug penetration and delivery [9,10].

Nanotechnology provides opportunities to tackle treatment-
refractory conditions, such as cancer, through smart systems of delivery
for relevant drugs to the tumor sites. The majority of the earliest anti-
cancer nanocarriers were designed on the basis of the enhanced perme-
ability and retention (EPR) effect [11,12]. EPR delivery systems rely on
the long-standing observation that tumor vasculature is leaky and
thereby allows for high penetration of drugs within the tumor environ-
ment [13]. However, recent studies have questioned the role of EPR as a
dominantmechanism that governs the trafficking of drugs to the site of
the tumor [14]. For instance, the porosity of tumor vasculature has been
found to be dependent on the individual tumor model. In addition, the
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uptake of nanoparticles (NPs) by Kupffer cells in the liver could reduce
potentially the delivery of the drug to the tumor to aminiscule percent-
age (b1%) of the administered amount [15].

Active, targeted delivery often relies on surface modification of the
NPs with an antibody or peptide to interact with a ligand or receptor
of interest [16]. The interaction of NPs with an endothelial cell repre-
sents an early locus that can control the trafficking of circulating NPs
to the targeted tissue. A limitation with this method of delivery is the
ubiquitous expression of common molecules by endothelial cells,
which may increase the rate of off-target effects [8].

The high endothelial venule (HEV) is a highly specialized blood ves-
sel that is found only in the lymph nodes (LN) and tonsils in the usual
healthy state [17]. In contrast to normal venules that contain flat endo-
thelial cells, HEVs contain cuboid endothelial cells of greater height that
express a series of sialyl-LewisX-coated proteins, referred to as periph-
eral node addressin (PNAd) molecules [17]. MECA79 is a monoclonal
antibody (mAb) that recognizes all of the PNAdmolecules [18]. Interest-
ingly, HEVs are also formed ectopically in chronically inflamed tissues as
well as in a wide variety of cancers including PDAC [19–22]. We have
previously shown that microparticles coated with MECA79 localize to
lymph nodes through their interaction with HEVs [23]. Given that
MECA79 mAb also recognizes the ectopic HEVs in the tumors, we hy-
pothesized that MECA79-coated NPs can home to PDAC by binding to
the HEV structures in these tumors. Thus, MECA79-coated NPs afford
opportunities to deliver chemotherapeutics to PDAC.

2. Materials and methods

2.1. Cell line, mice and human PDAC tissue

Human pancreatic adenocarcinoma cell line BxPC-3 (CRL-1687)was
purchased from American Type Culture Collection (ATCC). NOD.Cg-
PrkdcscidIL2rgtm1Wjl/SzJ (NSG) (JAX#005557) mice were obtained from
The Jackson Laboratories. Male or female mice were used at
6–10weeks of age and housed in sterilized, ventilated cages in a specific

pathogen-free animal facility under a standard 12 h light/12 h dark
cycle. Micewere fed irradiated food andwater ad libitum. All animal ex-
periments and methods were performed in accordance with the rele-
vant guidelines and regulations approved by the Institutional Animal
Care and Use Committee of Brigham and Women's Hospital, Harvard
Medical School, Boston, MA. Human pancreatic ductal adenocarcinoma
tumors for research purposes were collected at the University of Massa-
chusetts Medical School under informed consent IRB ID: H00004721.
The specimens were completely anonymous and had no direct identi-
fiers and no codes or indirect identifiers that link back to subjects.

2.2. Synthesis of MECA79 conjugated NP

The poly(D,L-lactic-co-glycolic) acid (PLGA)-based copolymers were
purchased from PolySciTech®, Akina Inc. Methoxy Poly (ethylene gly-
col)-b-PLGA copolymer (mPEG-PLGA, MW 5,000:30,000 Da, 50:50 LA:
GA (w:w)) and PLGA-b-poly(ethylene glycol)-maleimide (PLGA-PEG-
MAL, Mw ~30,000–5,000 Da, 50:50 LA:GA (w:w)) were used as the
core polymers. The NPs were engineered using self-assembly single
step nanoprecipitation. PEG-PLGA and maleimide-PEG-PLGA were dis-
solved in acetone. Paclitaxel (Taxol) (LC Laboratories, USA), Oregon
Green™ 488 Conjugate (Oregon Green™ 488 labeled Taxol, Flutax-2,
ThermoFisher Scientific, US, referred to as *Taxol), or IRDye 800CWCar-
boxylate (LI-COR, USA) was added to the polymer mixture, vortexed
and then added dropwise to a 0.015% aqueous solution of polyvinyl al-
cohol under vigorous stirring to formulate Taxol-NPs, *Taxol-NPs, or
IR800-NPs. Then, the NP suspension was stirred for 2 h, and the NPs
were concentrated by centrifugation using Amicon Ultra-15 centrifugal
filter units (MWCO100 kDa; Sigma-Aldrich) at 3,750 × rpm in intervals
of 5 min. The resulting NPs were washed with Dulbecco's phosphate-
buffered saline (DPBS) (Mediatech, Inc., Manassas, VA) and resus-
pended in 1 mL of DPBS.

The anti-mouse/human PNAd antibody (MECA79, NOVUS Biologi-
cals) was conjugated to the functional group of NPs using thiol-
maleimide chemistry. Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP, 0.5 M, Sigma-Aldrich) was used to cleave thiol groups of
MECA79 mAb. 30 μg of MECA 79 mAb was mixed with 30 μl of TCEP
and incubated for 15 min at room temperature, then it was mixed
with the NP suspension. The MECA79-NPs were stored at 4 °C prior to
use.

2.3. Characterization of NPs

The size distribution of NPs was determined using Dynamic Light
Scattering (DLS) as previously described [24]. The morphology of NPs
was observed by transmission electron microscopy (TEM). Freshly pre-
paredNPswere deposited on 200-mesh Formvar/carbon-coated copper
grids and negatively stainedwith 0.75% uranyl formate stain, before im-
aging with a Tecnai G2 Spirit BioTWIN electron microscope equipped
with an AMT 2 k CCD camera and low-dose software. The loading of
Taxol was determined using ultraviolet-visible (UV-VIS) spectropho-
tometer as previously described [24]. A calibration curve of the absor-
bance at 230 nm for various concentrations of Taxol was prepared.
The absorbance of the supernatants and samples were compared with
this calibration curve to determine the loading efficiency of Taxol.

2.4. Release kinetics of Taxol

To quantify the release profile of Taxol from the NPs, *Taxol-NPs or
MECA79-*Taxol-NP were incubated at 37 °C in triplicate. At
predetermined time intervals, the NPs were removed, transferred to
Amicon Ultra-15 centrifugal filter units (MWCO 10 kDa; Sigma-
Aldrich), and centrifuged at 3,750 × rpm for 5 min. The filtrate was an-
alyzed with a UV-VIS spectrophotometer, and absorbance was mea-
sured at 488 nm to determine the amount of released Taxol at each
time point.

Research in context

Evidence before this study

Thehigh endothelial venule (HEV) is a highly specialized blood ves-
sel found only in the lymph nodes (LN) and tonsils of healthy indi-
viduals. Assessment of the presence of HEVs in cancer tissues
including PDAC has gained considerable interest recently. We
have shown previously that MECA79 monoclonal antibody
(mAb)-coated particles localize to the LN, where MECA79 mAb
recognizes PNAd molecules expressed on the surface of the
HEVs.

Added value of this study

Our data support the notion that the desmoplastic region of PDAC
contains HEVs. Here, for the first time, we demonstrate that
MECA79 mAb-coated particles home to implanted human PDAC
in humanizedmice. TreatmentwithMECA79-Taxol-NPs improved
the efficacy of Paclitaxel significantly in suppressing the growth of
PDAC.

Implications of all the available evidence

Our HEV-targeted platform of therapeutic delivery carries signifi-
cant transformative potential in improving the treatment of
PDAC, one of the most refractory human cancers.
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2.5. MTT assay

The standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo-
lium bromide (MTT) protocol was utilized to assay the cell viability.
Briefly, the BxPC-3 cell line was cultured in a 96-well plate (2 × 105

cells/well) and incubated at 37 °C in 5% CO2 overnight. Next, empty
NPs, Taxol-NPs and free Taxol were added to the cells and incubated
at 37 °C in 5% CO2 for 24 h. Then, the MTT solution (5 mg/ml) was
added to each well, and the cells were incubated for another 4 h.
Upon removal of the MTT solution, the formed formazan crystals were
solubilizedwith isopropanol for 15min, and the proportion of formazan
to the number of viable cells was determined by an absorbance micro-
plate reader (Versa MAX, Molecular Devices).

2.6. Pancreatic tumor implantation

The human PDAC tumor was cut into 3–5 mm3 pieces with a razor
blade on a sterilized petri dish. A small incision was made in the skin
on the lower back of NSGmice, and the PDAC tumorwas implanted sub-
cutaneously. The tumor growthwasmonitored three times perweek by
digital caliper (Fisherbrand™Traceable™Digital Calipers).

2.7. In vivo targeting of human PDAC by NPs

To study the trafficking of NPs, the tumor-bearing mice were
anesthetized via inhalation of isoflurane/oxygen, and IR800-NPs or
MECA79-IR800-NPs were administered intravenously. The trafficking
of the fluorescently labeled NPs was studied using a UVP iBox®
Explorer2™ Imaging Microscope equipped with a 750–780 nm excita-
tion filter and an 800 nm long-pass emission filter. For live imaging,
mice were anesthetized and placed inside the dark box in prone
position. For ex vivo imaging, the mice were sacrificed via carbon diox-
ide inhalation and cervical dislocation. Then, the pancreatic tumors
were harvested for imaging.

2.8. Immunofluorescence and Immunohistochemistry staining of tumor

Frozen OCT blocks of tumors were cut using a cryostat into 8-μm
thick sections and were stained using anti-PNAd (MECA79), anti-
human CD31 (WM59, BioLegend), anti-Caspase-3 (4-1-18, BioLegend),
anti-Collagen I (abcam), anti-Collagen IV (abcam), anti-Fibronectin
(abcam), anti-alpha smooth muscle Actin (α-SMA, abcam), HECA 452
(HECA-452, BioLegend), anti-human HLA-A,B,C antibody (W6/32,
BioLegend) and anti-mouse/humanKi-67 (11F6, BioLegend) antibodies.
DAPI (VECTASHIELD, Vector Laboratories Burlingame, CA) was used to
stain the cell nuclei. The stained tissue sections were imaged using a
fluorescent confocal microscope and an EVOS FL2 auto microscope.
For immunohistochemistry (IHC) staining, the human post-mortem
PDAC samples were stained with anti-mouse/human PNAd (MECA79).

2.9. PDAC treatment

When the size of the implanted tumor reached 8 mm in diameter,
the mice were randomized into different groups and given specified
treatments: Group #1 was the control and received no treatment;
Group #2 received free Taxol; Group #3 received Taxol-NPs; and
Group #4 received MECA79-Taxol-NPs. All mice received intravenous
injections three times a week for two weeks, followed by twice a
week for one week. The Taxol dose was fixed at 0.5 mg/kg among
Groups #2–4. The body weight and tumor size of the animals were
monitored throughout the treatment course.

Antitumor activity was evaluated in terms of tumor volume (V), in
which l, w, and h are the length, width, and height of the tumor as

measured by a digital caliper, defined as

V ¼ l�w� h

The tumor growth inhibition (TGI), in which Vc and Vt are the vol-
ume of the control tumor and tumor in treated groups at the end of
the study, respectively, and Vo is the average starting volume, was
thus estimated as follows

TGI %ð Þ ¼ Vc−Vtð Þ
Vc−Voð Þ � 100

2.10. RT-PCR assay

RNA was isolated with TRIZOL (Invitrogen), and the first strand of
cDNA was synthesized using 1 μg of RNA and High-Capacity Reverse
Transcriptase (Invitrogen). RT-PCR was performed with SYBR Green
PCR reagents. RNA levels were normalized to the level of GAPDH and
calculated as delta-delta threshold cycle (ΔΔCT). Primers used for RT-
PCR are listed as follows: GAPDH-For: AGCCACATCGCTCAGACAC,
GAPDH-Rev: GCCCAATACGACCAAATCC; VEGF-For: CTACCTCCACCATG
CCAAGT, VEGF-Rev: GCAGTAGCTGCGCTGATAGA; All RT-PCR reactions
were performed in triplicate.

2.11. Statistics

Two-way ANOVA or one-way ANOVA analysis were used for
comparison of experimental groups. Student's t-test was used for com-
parison of two groups. Differences were considered to be significant for
*p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. Prism software was used for data
analysis and to prepare graphs (GraphPad). Data represent mean ±
SEM.

3. Results

3.1. Presence of ectopic HEVs in PDAC

As outlined above, HEVs are formed newly in some malignancies,
including PDAC [25]. This characteristic provides an unprecedented op-
portunity to test the efficacy of HEV-targeted delivery for the treatment
of PDAC. We screened six post-mortem PDAC samples. All of these tis-
sues contained de novoHEVs,when analyzed by immunohistochemistry
staining of PNAd (marked with asterisks in Fig. 1a, 1–6). The cuboid en-
dothelial cells of the HEV can be observed in a high-magnification IHC
image of a PNAd+ vessel in the PDAC tumor (Fig. 1b).

We propagated PDAC tumor samples (using NSG mice) from a
tumor that was resected from a patient with advanced PDAC. Implants
were placed in NSG mice, and the tumor was removed to assess the
presence of HEV post-implantation. Immunohistochemistry showed
the presence of de novo HEVs (ectopic HEVs) in this PDAC sample
(Fig. 1c). Further localization of the PDAC via immunofluorescence
staining showed the presence of HEVs within the dense desmoplastic
regions of the tumor (Fig. 1d). The HEV structures were detectedwithin
the dense extracellular matrix (ECM) of the PDAC, as evidenced by
staining the ECM components with fibronectin and α-smooth muscle
actin (α-SMA), as shown in Fig. 1d [26]. To prove further that these
vascular structures were HEVs, we also used HECA452 antibody (recog-
nizes sialyl Lewisx), which stained the structures that were identified as
HEVs (Supplementary Fig. 1a). The use of human Class I HLA antibody
revealed that the HEVs co-stained with anti PNAD antibody, suggesting
that at least a portion of these HEVs remain of human origin (Supple-
mentary Fig. 1b).
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3.2. Targeting PDAC in NSG mice using MECA79-IR800-NPs

Next, we tested the capacity of MECA79-NPs to localize to human
PDAC following implantation into NSG mice. The PDAC-bearing NSG
mice were injected with MECA79-IR800-NPs or non-conjugated
IR800-NPs intravenously and imaged after 24 h. MECA79-IR800-NPs
trafficked to the PDAC at a greater rate than that of the untreated control

and non-conjugated IR800-NPs (n=4mice/group) (Fig. 2a). Themean
fluorescence intensity (MFI) of the PDAC in the MECA79-NP-injected
mice was significantly higher than the mice injected with
non-conjugated IR800-NPs (4.5 ± 0.5 × 104 vs.1.1 ± 0.2 × 104,
***p b 0.001, student's t-test, n = 4 mice/group) (Fig. 2b). We
also examined PDAC tissue to assess the pattern of trafficking of
MECA79-IR800-NPs. The MECA79-IR800-NPs (in red) were localized

Fig. 1. Immunohistochemistry and immunofluorescence analysis of human PDAC. (a) Representative images from immunohistochemistry analysis of human PDAC samples from post-
mortem showing ectopic PNAd+ venules (marked by * in the images, n = 6, scale bar = 100 μm). (b) A representative high-magnification IHC image of a PNAD+ vessel in the PDAC
(Scale bar = 75 μm). (c) Immunohistochemistry staining of the human PDAC prior to implantation into the NSG mice confirming PNAd expression in the tissue. (d) Representative
images of PNAD+ vessels (green) surrounded by Fibronectin (red) and αSMA (red) (Scale bar = 100 μm).
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to the vicinity of HEVs (in green) in the tumor (Fig. 2c). The arrows
point to the areas of accumulation of MECA79-IR800-NPs in the
tumor section.

3.3. Synthesis and characterization of MECA79-Taxol-NPs

We evaluated whether our model of targeted trafficking of NPs re-
sults in increased delivery and improved efficacy of a chemotherapeutic
drug. We synthesized PLGA-based NPs encapsulating paclitaxel (Taxol-
NPs). Fig. 3a shows the electron microscopy imaging of Taxol-NPs with
spherical shape. The surface of theNPswas thenmodifiedwithMECA79
mAb to form a delivery platform to target HEVs within PDAC. The
average size of MECA79-Taxol-NPs was significantly higher than the
Taxol-NPs (123.7 ± 8.2 nm vs. 80.9 ± 2.8, **p b 0.01, student's t-test,
n = 5/group) (Fig. 3b). The Taxol was released from the NPs in a
sustained manner during a one-week time period (Fig. 3c). The loading
efficacy of Taxol in the NPs varied between 15%–30%.

Next, we tested the efficacy of Taxol-NPs in killing pancreatic adeno-
carcinoma cells in vitro using the MTT assay. The Taxol-NPs were as ef-
fective as free Taxol and resulted in significant tumor cell death
(Fig. 3d).

Oregon Green™ 488 Taxol (*Taxol) was used to confirm the
targeted delivery of Taxol to tumor. Either *Taxol or MECA79-*Taxol-
NP was injected intravenously into PDAC-bearing NSG mice, and tu-
mors were harvested 24 h post-injection for ex vivo imaging. The
MFI of tumors was significantly higher in the MECA79-*Taxol-NP
group, as compared to the *Taxol group (Fig. 3e). Immunofluorescence
imaging of the PDAC tissue showed that more MECA79-*Taxol-NPs
were present within the ECM of the tumor, as compared to the control
group (Fig. 3f).

3.4. Therapeutic efficacy of MECA79-Taxol-NPs

We investigated the efficacy of MECA79-Taxol-NPs in the treatment
of PDAC in NSG mice. Tumors were implanted into NSG mice, and the
mice were randomized on the basis of tumor size and assigned to four
different groups: control (no treatment), free Taxol, Taxol-NPs, and
MECA79-Taxol-NPs.

The results demonstrated amarked reduction in the size of the PDAC
during the course of treatment. The size of the tumor at the end of
the study was significantly lower in mice treated with MECA79-Taxol-
NPs (1.4 ± 0.4 × 103 mm3), as compared to the no treatment group (6

Fig. 2. Targeted delivery of NP to the PNAd-expressing HEV in PDAC. (a)Whole-body NIR fluorescent imaging showing higher trafficking of MECA79-IR800-NPs to PDAC, as compared to
non-conjugated IR800-NPs. The dashed area in each image represents the PDAC tumor in vivo and ex vivo post-harvest, respectively. (b) Corresponding MFI of the tumor showing a
significant increase in trafficking of MECA79-IR800-NPs, as compared to the non-conjugated IR800-NPs. The data are presented as the mean and SEM (n = 3). (***p b 0.001, student's
t-test). (c) Representative immunofluorescence micrograph of the tumor 24 h post-injection of MECA79-IR800-NPs (red) demonstrates their presence around HEV (green). The red ar-
rows point to the areas of MECA79-IR800-NP accumulation in the tumor (Scale bar = 100 μm).
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± 1.4 × 103 mm3), the free Taxol treatment group (3.3 ± 0.3
× 103 mm3), or the Taxol-NP treatment group (4.2 ± 1.3 × 103 mm3,
***p b 0.001, ANOVA, n = 5 mice/group) (Fig. 4a). Non-conjugated
Taxol-NP treatment, which relies solely on the EPR effect, was not effec-
tive, and the average size of the tumor in this group was similar to no
treatment and free Taxol treatment groups. Furthermore, the final
weight of the tumors in the mice treated with MECA79-Taxol-NPs was
significantly smaller in comparison to the no treatment, free Taxol,
and Taxol-NP treatment groups (Taxol dose = 0.5 mg/kg, *p b 0.05,
**p b 0.01, ANOVA, n = 5 mice/group) (Fig. 4b). Representative images
of tumors from each group at the end of the study are shown in Fig. 4b.

Finally, we calculated the tumor growth inhibition rate for each
treatment group. The tumor growth inhibition rate almost doubled

when mice were treated with MECA79-Taxol-NPs, as compared to the
mice treated with a similar dose of free Taxol (68.02 ± 1.8 vs.36.91 ±
0.5, ***p b 0.001, student's t-test, n = 5 mice/group).

3.5. Immunofluorescence characterization of the PDAC

Assessment of the tumor tissue by immunofluorescence staining
post-treatment revealed the presence of more apoptotic cells (cas-
pase-3+, Fig. 5a) in the targeted treatment group in comparison to
the other groups. Caspase-3 is one of the cysteine proteases associated
with Taxol-induced programmed cell death [27]. The percentage of
caspase-3+ cells doubled when the mice were treated with
MECA79-Taxol-NPs (66.42 ± 2.84%), as compared to Taxol-NPs

Fig. 3. Formulation and characterization of MECA79-Taxol-NPs. (a) Representative TEM images of Taxol-NP (Scale bar = 100 nm) (b) Hydrodynamic diameter of non-conjugated and
MECA79-conjugated Taxol-NPs. The data are presented as the mean and SEM (n = 6). (c) Release kinetics of Taxol from NPs over one-week. The data are presented as the mean and
SEM (n = 3). (d) Taxol-NPs induced similar levels of apoptosis in pancreatic cancer cells in vitro in comparison to free Taxol. (e) The MFI of tumors showed significantly higher
accumulation of *Taxol in MECA79-*Taxol-NP group, as compared to *Taxol group (*p b 0.05, student's t-test). The data are presented as the mean and SEM (n = 3). (f) Immunofluores-
cence staining of PDAC tissue showed that MECA79-*Taxol-NPs (green) were present within the ECM (Collagen IV, in red) of tumor at a higher number, as compared to the control group
(Scale bar = 100 μm).
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(29.25 ± 2.17%) and free Taxol (36.58±2.74%) (Fig. 5b). Apoptotic cells
were located in close proximity to the vasculature (CD31+ and HEV,
Fig. 5c). In addition, immunofluorescence staining of the PDAC using a
cellular marker of proliferation (Ki67) demonstrated a higher percent-
age of Ki67+ cells in the Taxol-NP group, as compared to the MECA79-
Taxol-NP group (47.7 ± 2.9% vs. 14.4 ± 1.8%, ***p b 0.0001, student's
t-test) (Fig. 5a and d). Proliferating cells were located around the
CD31+ vasculature, but we observed very few around the HEV (Fig. 5e).

The PDAC in mice treated with MECA79-Taxol-NPs also demon-
strated lower vascularization (CD31) as compared to the other groups
(Fig. 5a). To assess the activity of vascular cells, the expression levels
of VEGF genes were compared between the four groups. The expression
of VEGF downregulated significantly in the tumor following treatment
with MECA79-Taxol-NPs, while the expression levels remained the
same in the no treatment, free Taxol, and Taxol-NP treatment groups
(Supplementary Fig. 2a). Diminished microvessel intensity and VEGF
expression levels have been reported previously as a result of Taxol
treatment [28]. Taken together, our findings that demonstrate higher
cellular apoptosis, along with lower cellular proliferation and vasculari-
zation, demonstrate efficient delivery of Taxol to PDAC using our
targeted platform. To evaluate the changes in ECMdeposition, PDAC tu-
mors from the control and MECA79-Taxol-NP treatment groups were
stained for Collagen I. Interestingly, Collagen I deposition was de-
creased, and the matrix became thinner and disrupted in the

MECA79-Taxol-NP treated mice as compared to the control group
(Fig. 5f).

4. Discussion

PDAC remains one of the most lethal malignancies [1,2]. Nearly 80%
of PDAC patients are not eligible for tumor resection at the time of
diagnosis, due to the presence of locally advanced disease or distantme-
tastases. The mainstay of treatment for patients with advanced PDAC is
palliative therapies, including chemotherapy and radiation [29].
Gemcitabine-based combination therapy has gathered momentum re-
cently, but the overall prognosis for PDAC remains dismal [30,31].
Therefore, the development of an innovative therapeutic strategy
aimed at improving the outcomes of PDAC patients constitutes a
major unmet need.

The use of NPs provides an opportunity to target various pathologi-
cal arms of PDAC. NPs can be modified for a number of variables to im-
prove their anti-tumor efficacy, including charge, size, and shape
[32,33]. A few reports have described the use of NPs to counter resis-
tance toward gemcitabine. One method utilizes NPs to improve the
overall kinetics of gemcitabine (i.e., increasing its half-life) or to increase
the cellular uptake of gemcitabine by the tumor [34]. Others have for-
mulated polymeric NPs encapsulating curcumin, which increased its
systemic bioavailability and resulted in increased suppression of PDAC
in animals, as compared to free drugs [35]. The utility of NPs also centers
on their potential to target specific molecular targets of the cancer.
Epidermal growth factor receptor (EGFR) [36–39], Mucin 1 (MUC1)
[40], and Plectin-1 [41] are among the receptors on the surface of cancer
cells being used to target PDAC. These tumor cells are not in direct con-
tinuity with the blood.

The dense microenvironment of the PDAC is a key feature of PDAC
that contributes to its resistance to therapeutic agents [42]. The dense
stroma of PDAC (a result mainly of overproduction of ECM by stromal
cells) is largely hypovascular, which restrains the penetrance of thera-
peutics [43]. The dense microenvironment of PDAC contributes to its
immune evasion as well. Therefore, a significant interest has arisen to
modulate the PDAC stroma in order to increase the efficacy of therapeu-
tics [7,44–46], such as various transgenicmousemodels inwhich genet-
ically, enzymatically or pharmacologically induced remodeling of the
stroma can increase the penetrance of gemcitabine.

One obstacle facingmost treatment strategies is poor delivery of the
drugs to the site of the tumor. Albumin-bound paclitaxel particles (nab-
Paclitaxel) that interact with endogenous albumin transporters on
endothelial cells of the tumor have been shown to traverse these cells
effectively [47]. Liu et al. have targeted neuropilin-1 (NRP-1) on PDAC
tumor vasculature in order to increase the penetration of silica NPs
into the tumor [48]. They tested the co-administration of silica NPs
and the cyclic tumor-penetrating peptide iRGD in patient-derived
PDAC xenografts with low and high NRP-1 expression levels. They
found that the silica NPs accumulated more extensively in the tumor
with elevated levels of NRP-1 expression.

Our delivery platform has several unique qualities. PNAd-expressing
HEVs are found in LNs normally, but PDAC peculiarly forms de novo
HEVs [25]. Similarly, others have also demonstrated the expression of
HEVs by other types of cancer and their potential implications in
lymph node metastasis [49]. Our histological data indicate that these
HEVs are embedded within the dense stroma. Targeting HEVs here pre-
sents an invaluable opportunity to develop a platform that could deliver
several antineoplastic molecules that modulate the stromal milieu or
enhance the local anti-tumor immune response. As noted in our histol-
ogy data, chemotherapeutic agents could also target fibroblasts that
surround the HEV, as demonstrated by their high expression of
caspase-3.

Our deliverymethod can also target metastatic lesions hidden in the
LNs. We have demonstrated previously that MECA79-coated particles
can localize to HEVs in lymph nodes [24,50].Wewere unable to address

Fig. 4. Therapeutic efficacy of MECA79-Taxol-NPs. (a) Improved efficacy in delivering
Taxol to PDAC was observed in mice treated with MECA79-Taxol-NPs, as compared to
no treatment, free Taxol, and Taxol-NPs (Taxol dose =0.5 mg/kg, ***p b 0.001, ANOVA,
n = 5 mice/group). Arrows indicate the days of treatment. The data are presented as
the mean and SEM. (b) The final weight of the tumor in mice treated with
MECA79-Taxol-NPs was significantly lower, as compared to the no treatment, free Taxol,
and Taxol-NP treatment groups. (*p b 0.05, **p b 0.01, ANOVA, n = 5 mice/group). The
data are presented as the mean and SEM.
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Fig. 5.Histological analysis of PDAC following treatmentwithMECA79-Taxol-NPs. (a) Immunofluorescence staining of the tumor at the end of the study demonstrated that treatmentwith
MECA79-Taxol-NPs resulted in higher apoptosis (caspase-3+) of cancer cells, lower cellular proliferation (Ki67+), and decreased vascularization (CD31+) (Scale bar = 200 μm).
(b) Quantification of the caspase-3+ cells using ImageJ software (***p b 0.001, ANOVA, n = 3 mice/group). The data are presented as the mean and SEM. (c) Representative
immunofluorescence images of the PDAC tumor for markers of vasculature (CD31 and PNAd in green) and apoptosis (caspase-3 in red) following treatment with MECA79-Taxol-NPs
(Scale bar = 200 μm). (d) Quantification of the Ki67+ cells using ImageJ software (***p b 0.001, student's t-test, n = 3 mice/group). The data are presented as the mean and SEM.
(e) Representative immunofluorescence images of the PDAC tumor for markers of vasculature (CD31 and PNAd) and proliferation (Ki67) in the no-treatment group (Scale bar = 200
μm for CD31, 100 μm for PNAd). (f) Immunofluorescence staining for collagen I (red) of the PDAC tumor comparing the groups that received no treatment and MECA79-Taxol-NP
(Scale bar = 100 μm).
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involvement of the LNs by PDAC in ourmouse model (as NSGmice lack
LNs), but the efficacy of our strategy to target metastatic niches in LNs
should be explored in the future, as PDAC commonly metastasizes to
local and distant LNs [51]. Many PDAC patients die with advanced me-
tastasis to the liver and lungs [52]. Metastatic lesions in lungs and liver
may also form de novo HEVs. Future specific metastatic animal models
are required to examine the presence of HEVs in metastatic lesions, es-
pecially in the liver and lungs.

The treatment of complex medical conditions often requires combi-
natorial strategies that target various pathologic arms of the disease.
Though we used a standard chemotherapy drug to demonstrate a
proof of concept in this study, future studies can focus on delivering
more specificmodulators. One example is to deliver agents that dampen
the activity of regulatory T cells but potentiate the activity of effector
immune cells [53]. The other important feature is that ourNPs target en-
dothelial cells primarily, rather than relying on passive accumulation.
Interestingly, HEVswere foundwithin thedense stromaof thepancreas.
Our delivery platform could provide opportunities to deliver modula-
tors of the extracellular matrix (ECM) to PDAC as well. Finally, the po-
tential significance of our HEV-targeted delivery platform lies in its
capacity to provide molecular imaging to detect the early formation of
malignant tumors and LN metastasis. Expansion of HEVs is one of the
earliest changes that occurs in LNs following invasion by cancer, a phe-
nomenon that can be traced by devising tagged MECA79-NPs [17]. Fur-
thermore, de novo formation of HEV in the pancreas can be detected
with high positive predictive value, given that a normal pancreas does
not contain HEVs. Indeed, the development of a molecular imaging
technique that will enhance the ability to properly diagnose and stage
PDAC in its nascent phase is a major unmet need that could improve
its overall outcome.

Several limitations can be addressed in the future to further advance
our delivery platform. Here, we used Taxol, but one could envision bet-
ter efficacy with somewhat more promising drugs, such as gemcitabine
or devising a combinatorial strategywith a newer agent such as oteracil
[54]. Assessment of the efficacy of our delivery platform in treatingmet-
astatic niches in peripheral organs would also be a valuable pursuit, as
these niches alsomay express HEV. Such an investigationwould require
the development of a predictable mouse model with metastatic PDAC
lesions. Lastly, a more comprehensive examination of the pattern of
HEV formation within the tumor, in regard to its vicinity with actual
tumor or vasculature, its development, and its progression can greatly
help to better predict and/or develop effective therapeutic strategies. Fi-
nally, testing the efficacy of our delivery platform in other types of HEV-
bearing malignancies would add greater rigor.

Of note, emerging data indicate the presence of HEVs in othermalig-
nancies, such as metastatic melanoma, adenocarcinoma of the colon,
breast cancer, and non-small cell lung cancer [55,56]. Therefore, our
new delivery platform can provide an avenue for the development of
the next generation of nano-targeted modalities for the treatment of le-
thal cancers.
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