40 research outputs found

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Brain Research to Ameliorate Impaired Neurodevelopment - Home-based Intervention Trial (BRAIN-HIT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This randomized controlled trial aims to evaluate the effects of an early developmental intervention program on the development of young children in low- and low-middle-income countries who are at risk for neurodevelopmental disability because of birth asphyxia. A group of children without perinatal complications are evaluated in the same protocol to compare the effects of early developmental intervention in healthy infants in the same communities. Birth asphyxia is the leading specific cause of neonatal mortality in low- and low-middle-income countries and is also the main cause of neonatal and long-term morbidity including mental retardation, cerebral palsy, and other neurodevelopmental disorders. Mortality and morbidity from birth asphyxia disproportionately affect more infants in low- and low-middle-income countries, particularly those from the lowest socioeconomic groups. There is evidence that relatively inexpensive programs of early developmental intervention, delivered during home visit by parent trainers, are capable of improving neurodevelopment in infants following brain insult due to birth asphyxia.</p> <p>Methods/Design</p> <p>This trial is a block-randomized controlled trial that has enrolled 174 children with birth asphyxia and 257 without perinatal complications, comparing early developmental intervention plus health and safety counseling to the control intervention receiving health and safety counseling only, in sites in India, Pakistan, and Zambia. The interventions are delivered in home visits every two weeks by parent trainers from 2 weeks after birth until age 36 months. The primary outcome of the trial is cognitive development, and secondary outcomes include social-emotional and motor development. Child, parent, and family characteristics and number of home visits completed are evaluated as moderating factors.</p> <p>Discussion</p> <p>The trial is supervised by a trial steering committee, and an independent data monitoring committee monitors the trial. Findings from this trial have the potential to inform about strategies for reducing neurodevelopmental disabilities in at-risk young children in low and middle income countries.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00639184</p

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Implementing a pragmatic clinical trial to tailor opioids for acute pain on behalf of the IGNITE ADOPT PGx investigators.

    Get PDF
    Opioid prescribing for postoperative pain management is challenging because of inter-patient variability in opioid response and concern about opioid addiction. Tramadol, hydrocodone, and codeine depend on the cytochrome P450 2D6 (CYP2D6) enzyme for formation of highly potent metabolites. Individuals with reduced or absent CYP2D6 activity (i.e., intermediate metabolizers [IMs] or poor metabolizers [PMs], respectively) have lower concentrations of potent opioid metabolites and potentially inadequate pain control. The primary objective of this prospective, multicenter, randomized pragmatic trial is to determine the effect of postoperative CYP2D6-guided opioid prescribing on pain control and opioid usage. Up to 2020 participants, age ≥8 years, scheduled to undergo a surgical procedure will be enrolled and randomized to immediate pharmacogenetic testing with clinical decision support (CDS) for CYP2D6 phenotype-guided postoperative pain management (intervention arm) or delayed testing without CDS (control arm). CDS is provided through medical record alerts and/or a pharmacist consult note. For IMs and PM in the intervention arm, CDS includes recommendations to avoid hydrocodone, tramadol, and codeine. Patient-reported pain-related outcomes are collected 10 days and 1, 3, and 6 months after surgery. The primary outcome, a composite of pain intensity and opioid usage at 10 days postsurgery, will be compared in the subgroup of IMs and PMs in the intervention (n = 152) versus the control (n = 152) arm. Secondary end points include prescription pain medication misuse scores and opioid persistence at 6 months. This trial will provide data on the clinical utility of CYP2D6 phenotype-guided opioid selection for improving postoperative pain control and reducing opioid-related risks

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    No full text
    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance

    India’s First Robotic Eye for Time-domain Astrophysics: The GROWTH-India Telescope

    Get PDF
    We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera that gives a 0.°82 field of view and a sensitivity of m g′ ∼ 20.5 in 5 minute exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (≳80%) and allowing rapid response to targets of opportunity. The data processing pipelines are capable of performing point-spread function photometry as well as image subtraction for transient searches. We also present an overview of the GROWTH-India telescope’s contributions to the studies of gamma-ray bursts, the electromagnetic counterparts to gravitational wave sources, supernovae, novae, and solar system objects
    corecore