14 research outputs found

    Morphological and Luminosity Content of Poor Galaxy Groups

    Full text link
    We find that the fraction of early-type galaxies in poor groups (containing from 4 to 10 members) is a weakly increasing function of the number of the group members and is about two times higher than in a sample of isolated galaxies. We also find that the group velocity dispersion increases weakly with the fraction of early-type galaxies. Early-type galaxies in poor groups are brighter in the near-infrared with respect to isolated ones by 0.75 mags (in K) and to a lesser degree (by 0.5 mags) also in the blue. We also find early-type galaxies in groups to be redder than those in the field. These findings suggest that the formation history for early-type galaxies in overdense regions is different from that of in underdense regions, and that their formation in groups is triggered by merging processes.Comment: 5 pages, 3 figures, ApJ Lett. in pres

    The Relation between Morphology and Dynamics of Poor Groups of Galaxies

    Full text link
    We investigate the relation between the projected morphology (b/a) and the velocity dispersion (sigma_v) of groups of galaxies using two recently compiled group catalogs, one based on the 2MASS redshift survey and the other on the SDSS Data Release 5 galaxy catalog. We find that the sigma_v of groups is strongly correlated with the group projected b/a and size, with elongated and larger groups having a lower sigma_v. Such a correlation could be attributed to the dynamical evolution of groups, with groups in the initial stages of formation, having small sigma_v, a large size and an elongated shape that reflects the anisotropic accretion of galaxies along filamentary structures. The same sort of correlations, however, could also be reproduced in prolate-like groups, if the net galaxy motion is preferentially along the group elongation, since then the groups oriented close to the line of sight will appear more spherical, will have a small projected size and large sigma_v, while groups oriented close to the sky-plane will appear larger in projection, more elongated, and will have smaller sigma_v. We perform tests that relate only to the dynamical evolution of groups (eg., calculating the fraction of early type galaxies in groups) and indeed we find a strong positive (negative) correlation between the group sigma_v (projected major axis) with the fraction of early type galaxies. We conclude that (a) the observed dependencies of the group sigma_v on the group projected size and b/a, should be attributed mostly to the dynamical state of groups and (b) groups in the local universe do not constitute a family of objects in dynamical equilibrium, but rather a family of cosmic structures that are presently at various stages of their virialization process.Comment: ApJ accepted, 8 pages, 8 figure

    Richness Dependence of the Recent Evolution of Clusters of Galaxies

    Full text link
    We revisit the issue of the recent dynamical evolution of clusters of galaxies using a sample of ACO clusters with z<0.14, which has been selected such that it does not contain clusters with multiple velocity components nor strongly merging or interacting clusters, as revealed in X-rays. We use as proxies of the cluster dynamical state the projected cluster ellipticity, velocity dispersion and X-ray luminosity. We find indications for a recent dynamical evolution of this cluster population, which however strongly depends on the cluster richness. Poor clusters appear to be undergoing their primary phase of virialization, with their ellipticity increasing with redshift with a rate de/dz ~ 2.5, while the richest clusters show an ellipticity evolution in the opposite direction (with de/dz ~ -1.2), which could be due to secondary infall. When taking into account sampling effects due to the magnitude-limited nature of the ACO cluster catalogue we find no significant evolution of the cluster X-ray luminosity, while the velocity dispersion increases with decreasing redshift, independent of the cluster richness, at a rate dsigma/dz ~ -1700 km/sec.Comment: 10 pages, MNRAS in pres
    corecore