32 research outputs found
Development of a fish cell culture model to investigate the impact of fish oil replacement on lipid peroxidation
Fish oils are rich in omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), predominantly 20:5n-3 and 22:6n-3, whereas vegetable oils contain abundant C18-PUFA, predominantly 18:3n-3 or 18:2n-6. We hypothesized that replacement of fish oils with vegetable oils would increase the oxidative stability of fish lipids. Here we have used the FHM cell line to test this hypothesis. The FHM cells were readily able to synthesize 20:5n-3 and 24:6n-3 from 18:3n-3 but 22:6n-3 synthesis was negligible. Also, they were readily able to synthesize 20:3n-6 from 18:2n-6 but 20:4n-6 synthesis was negligible. Mitochondrial β-oxidation was greatest for 18:3n-3 and 20:5n-3 and the rates for 16:0, 18:2n-6, 22:6n-3 and 18:1n-9 were significantly lower. Fatty acid incorporation was predominantly into phospholipids (79-97%) with very little incorporation into neutral lipids. Increasing the fatty acid concentration in the growth medium substantially increased the concentrations of 18:3n-3 and 18:2n-6 in the cell phospholipids but this was not the case for 20:5n-3 or 22:6n-3. When they were subjected to oxidative stress, the FHM cells supplemented with either 20:5n-3 or 22:6n-3 (as compared with 18:3n-3 or saturated fatty acids) exhibited significantly higher levels of thiobarbituric reactive substances (TBARS) indicating higher levels of lipid peroxidation. The results are discussed in relation to the effects of fatty acid unsaturation on the oxidative stability of cellular lipids and the implications for sustainable aquaculture
All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs
We present the first results from an all-sky all-frequency (ASAF) search for
an anisotropic stochastic gravitational-wave background using the data from the
first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
Upper limit maps on broadband anisotropies of a persistent stochastic
background were published for all observing runs of the LIGO-Virgo detectors.
However, a broadband analysis is likely to miss narrowband signals as the
signal-to-noise ratio of a narrowband signal can be significantly reduced when
combined with detector output from other frequencies. Data folding and the
computationally efficient analysis pipeline, {\tt PyStoch}, enable us to
perform the radiometer map-making at every frequency bin. We perform the search
at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every
frequency bin of width ~Hz in the range ~Hz, except for bins
that are likely to contain instrumental artefacts and hence are notched. We do
not find any statistically significant evidence for the existence of narrowband
gravitational-wave signals in the analyzed frequency bins. Therefore, we place
confidence upper limits on the gravitational-wave strain for each
pixel-frequency pair, the limits are in the range . In addition, we outline a method to identify candidate
pixel-frequency pairs that could be followed up by a more sensitive (and
potentially computationally expensive) search, e.g., a matched-filtering-based
analysis, to look for fainter nearly monochromatic coherent signals. The ASAF
analysis is inherently independent of models describing any spectral or spatial
distribution of power. We demonstrate that the ASAF results can be
appropriately combined over frequencies and sky directions to successfully
recover the broadband directional and isotropic results
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
Mathematical And Physical Properties Of Reliability Models In View Of Their Application To Modern Power System Components
This chapter has a twofold purpose. The first is to present an up-to-date review of the basic theoretical and practical aspects of the main reliability models, and of some models that are rarely adopted in literature, although being useful in the authors\u2019 opinion; some very new models, or new ways to justify their adequacy, are also presented. The above aspects are illustrated from a general, meth-odological, viewpoint, but with an outlook to their application to power system component characterization, aiming at contributing to a rational model selection. Such selection should be based upon a full insight into the basic consequences of assuming \u2013 sometimes with insufficient information \u2013 a given model. The second purpose of this chapter, closely related to the first, is to highlight the rationale behind a proper and accurate selection of a reliability model for the above devices, namely a selection which is based on phenomenological and physical models of aging, i.e. on the probabilistic laws governing the process of stress and degradation acting on the device. This \u201ctechnological\u201d approach, which is also denoted in the recent literature as an \u201cindirect reliability assessment\u201d, might be in practice the only feasible in the presence of a limited amount of data, as typically occurs in the field of modern power system. Although the present contribution does not address, for reasons of brevity, the topic of model or parameter statistical estimation, the development of the indirect reliability assessment is perfectly coherent \u2013 from a \u201cphilosophical\u201d point of view \u2013 with the recent success and fast-growing adoption of the Bayesian estima-tion methodology in reliability, as proved by the ever-increasing number of papers devoted to such methodology, in particular in the field of electric and electronic engineering.
In the framework of the investigation of innovations in reliability analyses regarding modern power systems, the present chapter takes its stimulus from the observation that the modern, deregulated, electrical energy market, striving towards higher system availability at lower costs, requires an accurate reliabil-ity estimation of electrical components. As witnessed by many papers appearing on the subject in literature, this is becoming an increasingly important, as well as difficult, task. This chapter gives theoretical and practical aids for the proper selection of reliability models for power system components. Firstly, the most adopted reliability models in the literature about electrical components are synthetically reviewed from the viewpoint of the classical \u201cdirect reliability assessment\u201d, i.e. a reliability assessment via statistical fitting directly from in-service failure data of components. The properties of these models, as well as their practical consequences, are discussed and it is shown that direct fitting of failure data may result poor or uncertain due to the limited number of data. Thus, practical aids for reliability assessment can be given by the knowledge of the degradation mechanisms responsible for component aging and failure. Such aging and life models, when inserted in a probabilistic framework, lead to \u201cphysical reliability models\u201d that are employed for the above-mentioned indirect reliability assessment: in this respect, a key role is played by \u201cStress-Strength\u201d models, whose properties are discussed in detail in the chapter. While the above part is essentially methodological and might be of interest even for non-electrical devices (e.g., Stress-Strength models were originally derived in mechanical engineering), very useful models can be deduced in the framework of indirect reliability assessment, that are useful both in the evaluation and at the design stage of components such as switchgears, insulators, cables, capacitors, trans-formers and rotating electrical machines. Then, since insulation is the weakest part of most electrical devices \u2013particularly in medium voltage and high voltage..
Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses