101 research outputs found

    Laser Doppler velocimeter aerial spray measurements

    Get PDF
    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft

    Workload profiles prior to injury in professional soccer players

    Full text link
    © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. This study examined if a particular profile of internal and external workload existed prior to injury. Forty-five professional soccer players were monitored over two seasons. For each non-contact injury, a profile of workload variables was determined for 4 weeks and expressed as (i) an absolute, (ii) week-to-week change and (iii) relative to the player’s season mean. Variables included exposure, session rating of perceived exertion (s-RPE) workload, total distance, low-, high-, very-high-speed running distance, mean speed, bodyload, monotony and strain. Acute:chronic workload ratio was also calculated and sensitivity of the relative workload was tested. Absolute and relative exposure and s-RPE workload were greater in all 3 weeks compared to the injury week (P  0.05). Acute:chronic workload ratio for s-RPE was significantly greater than acute:chronic workload ratio for very-high-speed running (P = 0.04). A workload threshold of 114% of a player’s season mean reported low sensitivity and specificity for exposure (25.6[20.2–33.5]% and 73.9[22.6–28.2]%,) and s-RPE workload (16.3[12.6–24.9]% and 79.9[20.3–26.1]%, respectively). No specific load profile existed, although high-sustained exposure and s-RPE were evident for the 3 weeks prior to injury. Consequently, load prescription should be aware of sustained high workloads

    Effects of northbound long-haul international air travel on sleep quantity and subjective jet lag and wellness in professional Australian soccer players

    Full text link
    © 2015 Human Kinetics, Inc. The current study examined the effects of 10-h northbound air travel across 1 time zone on sleep quantity, together with subjective jet lag and wellness ratings, in 16 male professional Australian football (soccer) players. Player wellness was measured throughout the week before (home training week) and the week of (away travel week) travel from Australia to Japan for a preseason tour. Sleep quantity and subjective jet lag were measured 2 d before (Pre 1 and 2), the day of, and for 5 d after travel (Post 1-5). Sleep duration was significantly reduced during the night before travel (Pre 1; 4.9 [4.2-5.6] h) and night of competition (Post 2; 4.2 [3.7-4.7] h) compared with every other night (P 0.90). Moreover, compared with the day before travel, subjective jet lag was significantly greater for the 5 d after travel (P 0.90), and player wellness was significantly lower 1 d postmatch (Post 3) than at all other time points (P 0.90). Results from the current study suggest that sleep disruption, as a result of an early travel departure time (8 PM) and evening match (7:30 PM), and fatigue induced by competition had a greater effect on wellness ratings than long-haul air travel with a minimal time-zone change. Furthermore, subjective jet lag may have been misinterpreted as fatigue from sleep disruption and competition, especially by the less experienced players. Therefore, northbound air travel across 1 time zone from Australia to Asia appears to have negligible effects on player preparedness for subsequent training and competition

    Determining Stroke and Movement Profiles in Competitive Tennis Match-Play From Wearable Sensor Accelerometry.

    Full text link
    ABSTRACT: Perri, T, Reid, M, Murphy, A, Howle, K, and Duffield, R. Determining stroke and movement profiles in competitive tennis match-play from wearable sensor accelerometry. J Strength Cond Res XX(X): 000-000, 2022-This study determined stroke and movement accelerometry metrics from a wearable sensor and compared between court surface (grass vs. hard) and match outcome (win vs. loss) during competitive tennis match-play. Eight junior high-performance tennis players wore a trunk-mounted global positioning system, with in-built accelerometer, magnetometer, and gyroscope during singles matches on hard and grass courts. The manufacturer software calculated accelerometer-derived total player load (tPL). A prototype algorithm classified forehands, backhands, serves, and "other" strokes, thereby calculating stroke PL (sPL) from individual strokes. Movement PL (mPL) was calculated as the difference between tPL and sPL, with all metrics reported as absolute and relative (min-1, %, and ·stroke). Analysis of accelerometer load and stroke count metrics was performed through a two-way (surface [grass vs. hard] × match outcome [win vs. loss]) analysis of variance (p 0.05). Increased mPL% featured on grass courts, whereas sPL% was increased on hard courts (p = 0.04, d = 1.18[0.31-2.02]). Elevated sPL·min-1 existed on hard courts (p = 0.04, d = 1.19[0.32-2.04]), but no differences in tPL·min-1 and mPL·min-1 were evident for surface or outcome (p > 0.05). Relative forehand sPL (FH-sPL·min-1) was higher on hard courts (p = 0.03, d = 1.18[0.31-2.02]) alongside higher forehand counts (p = 0.01, d = 1.29[0.40-2.14]). Hitting demands are heightened on hard courts from increased sPL and counts. Conversely, increased mPL% on grass courts likely reflects the specific movement demands from point-play. Physical preparation strategies during training blocks can be tailored toward movement or hitting loads to suit competitive surfaces

    Drag of suction cup tags on swimming animals : modeling and measurement

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 30 (2014): 726–746, doi:10.1111/mms.12083.Bio-logging tags are widely used to study the behavior and movements of marine mammals with the tacit assumption of little impact to the animal. However, tags on fast-swimming animals generate substantial hydrodynamic forces potentially affecting behavior and energetics adversely, or promoting early removal of the tag. In this work, hydrodynamic loading of three novel tag housing designs are compared over a range of swimming speeds using computational fluid dynamics (CFD). Results from CFD simulation were verified using tag models in a water flume with close agreement. Drag forces were reduced by minimizing geometric disruptions to the flow around the housing, while lift forces were reduced by minimizing the frontal cross-sectional area of the housing and holding the tag close to the attachment surface. Hydrodynamic tag design resulted in an experimentally measured 60% drag force reduction in 5.6 m/s flow. For all housing designs, off-axis flow increased the magnitude of the force on the tag. Experimental work with a common dolphin (Delphinus delphis) cadaver indicates that the suction cups used to attach the types of tags described here provide sufficient attachment force to resist failure to predicted forces at swimming speeds of up to 10 m/s.This work was supported by NOPP with NSF funds through ONR Grant N00014-11-1- 0113. MJ was supported by NOPP and the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland)

    Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Get PDF
    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In0.28Ga0.72As0.25Sb0.75 allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×1010 Jones and 1×1010 Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures

    From the track to the ocean : using flow control to improve marine bio-logging tags for cetaceans

    Get PDF
    This project was funded by the National Oceanographic Partnership Program [National Science Foundation via the Office of Naval Research N00014-11-1-0113]. C. Spencer Garborg was supported by a Grove City College Swezey Student Fellowship to Erik Anderson. Mark Johnson was funded by a Marie Curie-Sklodowska grant from the European Union. All supplemental data files are available from the Dryad Digital Repository (doi:10.5061/dryad.4j4m1).Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal.Publisher PDFPeer reviewe

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
    • …
    corecore