270 research outputs found
Over-the-Rotor Liner Investigation via the NASA Langley Normal Incidence Tube
NASA Langley and Glenn Research Centers have collaborated on the usage of acoustic liners mounted very near or directly over the rotor of turbofan aircraft engines. This collaboration began over a decade ago with the investigation of a metallic foam liner. Similar to conventional acoustic liner applications, this liner was designed to absorb sound generated by the rotor-alone and rotor-stator interaction sources within the fan duct. Given its proximity to the rotor tips, the expectation was that the liner would also serve as a pressure release and thereby inhibit the amount of noise generated. Initial acoustic results were promising, but there was concern regarding potential aerodynamic penalties. Nevertheless, there were sufficient positive results to warrant further investigation. To that end, the current report presents results obtained in the NASA Langley Normal Incidence Tube for 20 acoustic liner candidates for the OTR application. The majority contain grooves at their surface, designed to minimize aerodynamic penalties caused by placing the liner in close proximity to the fan rotor tips. The intent is to assess the acoustic properties of each liner configuration, and in particular to assess the effects of including the grooves on the overall acoustic performance. An additional intent of this paper is to provide documentation regarding recent enhancements to the NASA Langley Normal Incidence Tube
Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft
Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment
Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986
Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed
Failure of the ERBE scanner instrument aboard NOAA 10 spacecraft and results of failure analysis
The Earth Radiation Budget Experiment (ERBE) scanner instrument on the NOAA 10 spacecraft malfunctioned on May 22, 1989, after more than 4 years of in-flight operation. After the failure, all instrument operational mode commands were tested and the resulting data analyzed. Details of the tests and analysis of output data are discussed therein. The radiometric and housekeeping data appear to be valid. However, the instrument will not correctly execute operational scan mode commands or the preprogrammed calibration sequences. The data indicate the problem is the result of a failure in the internal address decoding circuity in one of the ROM (read only memory) chips of the instrument computer
SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope
Optical observations of the type IIb SN 2013df from a few days to about 250
days after explosion are presented. These observations are complemented with UV
photometry taken by \textit{SWIFT} up to 60 days post-explosion. The
double-peak optical light curve is similar to those of SNe 1993J and 2011fu
although with different decline and rise rates. From the modelling of the
bolometric light curve, we have estimated that the total mass of synthesised
Ni in the explosion is M, while the ejecta mass is
M and the explosion energy erg. In
addition, we have estimated a lower limit to the progenitor radius ranging from
. The spectral evolution indicates that SN 2013df had a
hydrogen envelope similar to SN 1993J ( M). The line
profiles in nebular spectra suggest that the explosion was asymmetric with the
presence of clumps in the ejecta, while the [O\,{\sc i}]
, luminosities, may indicate that the progenitor
of SN 2013df was a relatively low mass star ( M).Comment: 18 pages, 11 figures, 9 tables, accepted for publication in MNRA
SNhunt151: An explosive event inside a dense cocoon
Indexación: Scopus.We thank S. Spiro, R. Rekola, A. Harutyunyan, and M. L. Graham for their help with the observations. We are grateful to the collaboration of Massimo Conti, Giacomo Guerrini, Paolo Rosi, and Luz Marina Tinjaca Ramirez from the Osservatorio Astronomico Provinciale di Montarrenti. The staffs at the different observatories provided excellent assistance with the observations.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 267251, ‘Astronomy Fellowships in Italy’ (AstroFIt)’. NE-R acknowledges financial support from MIUR PRIN 2010-2011, ‘The Dark Universe and the Cosmic Evolution of Baryons: From Current Surveys to Euclid’. NE-R, AP, SB, LT, MT, and GP are partially supported by the PRIN-INAF 2014 (project ‘Transient Universe: Unveiling New Types of Stellar Explosions with PESSTO’). GP acknowledges support provided by the Millennium Institute of Astrophysics (MAS) through grant IC120009 of the Programa Iniciativa CientÃifica Milenio del Ministerio de EconomÃa, Fomento y Turismo de Chile. TK acknowledges financial support from the Emil Aaltonen Foundation. CRTS was supported by the NSF grants AST-0909182, AST-1313422, and AST-1413600. AVF is grateful for generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, the Miller Institute for Basic Research in Science (UC Berkeley), and NASA/HST grant GO-14668 from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555. The work of AVF was conducted in part at the Aspen Center for Physics, which is supported by NSF grantPHY-1607611; he thanks the Center for its hospitality during the neutron stars workshop in June and July 2017. NE-R acknowledges the hospitality of the ‘Institut de Ciències de l'Espai (CSIC), where this work was completed.This research is based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de AstrofÃsica de Canarias; the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofÃsica de Canarias, on the island of La Palma; the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundaci Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofÃsica de Canarias; the Liverpool Telescope, operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofÃsica de Canarias with financial support from the UK Science and Technology Facilities Council; the 1.82-m Copernico Telescope and the Schmidt 67/92 cm of INAF-Asiago Observatory; the Catalina Real Time Survey (CRTS) Catalina Sky Survey (CSS) 0.7-m Schmidt Telescope; and the Las Cumbres Observatory (LCO) network. This work is also based in part on archival data obtained with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555; the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (support was provided by NASA through an award issued by JPL/Caltech); and the Swift telescope.This work has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches M V ≈ -18 mag. No source is detected to M V ≳ -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analysed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN 2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (~50 d), and a slower decline, along with a negligible change in the temperature around the peak (T ≤ 10 4 K). We suggest that SNhunt151 is the result of an outburst, or an SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like η Carinae and originating from past mass-loss events. © 2017 The Author(s).https://academic.oup.com/mnras/article/475/2/2614/479530
Design of a vehicle based system to prevent ozone loss
Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet light (UV) radiation to reach the earth's surface. This is known to cause skin cancer and mutations. Chlorine liberated from Chlorofluorocarbons (CFC's) and natural sources initiate the destruction of stratospheric ozone through a free radical chain reaction. The project goals are to understand the processes which contribute to stratospheric ozone loss, examine ways to prevent ozone loss, and design a vehicle-based system to carry out the prevention scheme. The 1992/1993 design objectives were to accomplish the first two goals and define the requirements for an implementation vehicle to be designed in detail starting next year. Many different ozone intervention schemes have been proposed though few have been researched and none have been tested. A scheme proposed by R.J. Cicerone, Scott Elliot and R.P.Turco late in 1991 was selected because of its research support and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. Because most polar ozone depletion takes place during a 3-4 week period each year, the hydrocarbon must be injected during this time window. A study of the hydrocarbon injection requirements determined that 100 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Missions would be based from airport regions located in South America and Australia. To best provide the requirements of mission analysis, an aircraft with L/D(sub cruise) = 10.5, SFC = 0.65 (the faculty advisor suggested that this number is too low) and a 250,000 lb TOGW was selected as a baseline. Modularity and multi-role functionality were selected to be key design features. Modularity provides ease of turnaround for the down-time critical mission. Multi-role functionality allows the aircraft to be used beyond its design mission, perhaps as an High Speed Civil Transport (HSCT) or for high altitude research
Recommended from our members
Graphical experimental data for supplemental neutron-induced interactions
Study protocol: can a school gardening intervention improve children's diets?
BACKGROUND: The current academic literature suggests there is a potential for using gardening as a tool to improve children's fruit and vegetable intake. This study is two parallel randomised controlled trials (RCT) devised to evaluate the school gardening programme of the Royal Horticultural Society (RHS) Campaign for School Gardening, to determine if it has an effect on children's fruit and vegetable intake. METHOD/DESIGN: Trial One will consist of 26 schools; these schools will be randomised into two groups, one to receive the intensive intervention as "Partner Schools" and the other to receive the less intensive intervention as "Associate Schools". Trial Two will consist of 32 schools; these schools will be randomised into either the less intensive intervention "Associate Schools" or a comparison group with delayed intervention. Baseline data collection will be collected using a 24-hour food diary (CADET) to collect data on dietary intake and a questionnaire exploring children's knowledge and attitudes towards fruit and vegetables. A process measures questionnaire will be used to assess each school's gardening activities. DISCUSSION: The results from these trials will provide information on the impact of the RHS Campaign for School Gardening on children's fruit and vegetable intake. The evaluation will provide valuable information for designing future research in primary school children's diets and school based interventions. TRIAL REGISTRATION: ISRCTN11396528
- …