2,023 research outputs found

    ā€œNobody Wants to Be an Outsiderā€: From Diversity Management to Diversity Engagement

    Get PDF
    This article develops an analysis of diversity in two ways. We start with a theoretical discussion of the ways in which diversity has been approached within psychology, showing the competing arguments that have been developed that connect diversity, community, and multiculturalism. We show that not only are there psychological consequences to contemporary experiences of increased diversity but also that fundamental psychological capacitiesā€”such as self-consciousness, identity, and dialogueā€”actually stem from the experience of diversity. This has important implications for diversity management policies. The second part of the article gives an empirical illustration of how diversity is experienced in schools across England drawing on 13 interviews with senior staff and 11 focus groups with pupils aged between 12 and 14 years old. We discuss three themes related to experiences of diversity: (1) from difference to diversity, (2) real and imagined mobility across communities, and (3) collaborative practices, projects, and knowledge. What the empirical examples show is that critically engaging with diversity can be a more productive project than practices which construct diversity in terms of distinct groups that need respect and tolerance. Hence we argue approaches that promote engaging with diversity rather than traditional diversity management are more in line with foundational psychological insights as well as empirical research findings

    Genotype and environment affect the grain quality and yield of winter oats (Avena sativa L.)

    Get PDF
    The extent to which the quality and yield of plant varieties are influenced by the environment is important for their successful uptake by end users particularly as climatic fluctuations are resulting in environments that are highly variable from one growing season to another. The genotype-by-environment interaction (GEI) of milling quality and yield was studied using four winter oat varieties in multi-locational trials over 4 years in the U.K. Significant differences across the 22 environments were found between physical grain quality and composition as well as grain yield, with the environment having a significant effect on all of the traits measured. Grain yield was closely related to grain number māˆ’2 whereas milling quality traits were related to grain size attributes. Considerable genotype by environment interaction was obtained for all grain quality traits and stability analysis revealed that the variety Mascani was the least sensitive to the environment for all milling quality traits measured whereas the variety Balado was the most sensitive. Examination of environmental conditions at specific within-year stages of crop development indicated that both temperature and rainfall during grain development were correlated with grain yield and Ī²-glucan content and with the ease of removing the hull (hullability)

    Model Validation and Real-Time Process Control of a Continuous Flow Ohmic Heater

    Get PDF
    Ohmic heating is a highly efficient method for rapid fluid heating, with applications in fields such as food processing, pharmaceuticals, and chemical engineering. Prior to its industrial application, thorough analysis and modeling are crucial to ensure safe and efficient operations. Therefore, this research focuses on the development and validation of a transfer function-based model for a continuous flow ohmic heater (CFOH). Validation metrics include root mean square error (RMSE) and mean absolute percentage error (MAPE). The developed model achieves an RMSE of Ā±1.48 and a MAPE of Ā±2.58% compared to experimental results, demonstrating its accuracy. Furthermore, the research presents the implementation of robust real-time applications of advanced process controllers, including PID, MPC, and AMPC. These controllers were first simulated using the developed model and subsequently deployed in the pilot plant ohmic heater system to achieve precise temperature control and optimised input voltage. The reliability of this procedure was affirmed through a comparison between simulated results and empirical data obtained from the CFOH pilot plant. The study concludes by suggesting potential applications in fault diagnosis, educational training, system identification, and controller design

    The Role of Headwater Streams in Downstream Water Quality1

    Get PDF
    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters

    Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms

    Get PDF
    BackgroundAsthma is a chronic inflammatory disease involving diverse cells and mediators whose interconnectivity and relationships to asthma severity are unclear.ObjectiveWe performed a comprehensive assessment of TH17 cells, regulatory T cells, mucosal-associated invariant T (MAIT) cells, other T-cell subsets, and granulocyte mediators in asthmatic patients.MethodsSixty patients with mild-to-severe asthma and 24 control subjects underwent detailed clinical assessment and provided induced sputum, endobronchial biopsy, bronchoalveolar lavage, and blood samples. Adaptive and invariant T-cell subsets, cytokines, mast cells, and basophil mediators were analyzed.ResultsSignificant heterogeneity of T-cell phenotypes was observed, with levels of IL-13ā€“secreting T cells and type 2 cytokines increased at some, but not all, asthma severities. TH17 cells and ??-17 cells, proposed drivers of neutrophilic inflammation, were not strongly associated with asthma, even in severe neutrophilic forms. MAIT cell frequencies were strikingly reduced in both blood and lung tissue in relation to corticosteroid therapy and vitamin D levels, especially in patients with severe asthma in whom bronchoalveolar lavage regulatory T-cell numbers were also reduced. Bayesian network analysis identified complex relationships between pathobiologic and clinical parameters. Topological data analysis identified 6 novel clusters that are associated with diverse underlying disease mechanisms, with increased mast cell mediator levels in patients with severe asthma both in its atopic (type 2 cytokineā€“high) and nonatopic forms.ConclusionThe evidence for a role for TH17 cells in patients with severe asthma is limited. Severe asthma is associated with a striking deficiency of MAIT cells and high mast cell mediator levels. This study provides proof of concept for disease mechanistic networks in asthmatic patients with clusters that could inform the development of new therapies

    The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    Get PDF
    Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2 Ā°C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO2) and non-CO2 emissions, and suggests a need to understand available flexibility between how different greenhouse gases might be abated. There is a growing interest in developing a greater understanding of the particular role of shorter lived non-CO2 gases as abatement options. We address this here through a sensitivity study of different methane (CH4) emissions pathways to year 2100 and beyond, by including exchanges with CO2 emissions, and with a focus on related climate and economic advantages and disadvantages. Metrics exist that characterise gas equivalence in terms of climate change effect per tonne emitted. We analyse the implications of CO2 and CH4 emission exchanges under two commonly considered metrics: the 100-yr Global Warming Potential (GWP-100) and Global Temperature Potential (GTP-100). This is whilst keeping CO2-equivalent emissions pathways fixed, based on the standard set of emissions usually associated with RCP2.6. An idealised situation of anthropogenic CH4 emissions being reduced to zero across a period of two decades and with the implementation of such cuts starting almost immediately gives lower warming than for standard RCP2.6 emissions during the 21st and 22nd Century. This is despite exchanging for higher CO2 emissions. Introducing Marginal Abatement Cost (MAC) curves provides an economic assessment of alternative gas reduction strategies. Whilst simpler than utilising full Integrated Assessment Models (IAMs), MAC curves are more transparent for illustrative modelling. The GWP-100 metric places a relatively high value on climate change prevented for methane emission reduction, as compared to an equivalent mass of CO2 reduction. This in combination with the strong non-linearity in MAC curves (moving quickly from relatively cheap removal to emissions difficult to cut at any cost) causes little change under cost minimisation from standard RCP2.6 emissions. This reflects the original development of RCP2.6 standard emissions from similar minimisation. With gas exchange under GTP-100, however, we find much less methane is abated, resulting in higher temperatures, whilst costs are slightly lower. Our results also highlight the point at which greater methane mitigation would become beneficial from both a climate and economic aspect. If by 2030 removal of all methane were to become possible at an average cost less than $1000 per tonne of CH4, then this would be the cheapest option, for GWP-100 metric and our CO2 MAC curve. Critically this would increase the possibility of constraining warming to two degrees

    Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes

    Get PDF
    Widespread triggering of landslides by large storms or earthquakes is a dominant mechanism of erosion in mountain landscapes. If landslides occur repeatedly in particular locations within a mountain range, then they will dominate the landscape evolution of that section and could leave a fingerprint in the topography. Here, we track erosion provenance using a novel combination of the isotopic and molecular composition of organic matter deposited in Lake Paringa, New Zealand. We find that the erosion provenance has shifted markedly after four large earthquakes over 1000 years. Postseismic periods eroded organic matter from a median elevation of 722 +329/āˆ’293 m and supplied 43% of the sediment in the core, while interseismic periods sourced from lower elevations (459 +256/āˆ’226 m). These results are the first demonstration that repeated large earthquakes can consistently focus erosion at high elevations, while interseismic periods appear less effective at modifying the highest parts of the topography
    • ā€¦
    corecore