748 research outputs found

    A Theory of Mind investigation into the appreciation of visual jokes in schizophrenia

    Get PDF
    BACKGROUND: There is evidence that groups of people with schizophrenia have deficits in Theory of Mind (ToM) capabilities. Previous studies have found these to be linked to psychotic symptoms (or psychotic symptom severity) particularly the presence of delusions and hallucinations. METHODS: A visual joke ToM paradigm was employed where subjects were asked to describe two types of cartoon images, those of a purely Physical nature and those requiring inferences of mental states for interpretation, and to grade them for humour and difficulty. Twenty individuals with a DSM-lV diagnosis of schizophrenia and 20 healthy matched controls were studied. Severity of current psychopathology was measured using the Krawiecka standardized scale of psychotic symptoms. IQ was estimated using the Ammons and Ammons quick test. RESULTS: Individuals with schizophrenia performed significantly worse than controls in both conditions, this difference being most marked in the ToM condition. No relationship was found for poor ToM performance and psychotic positive symptomatology, specifically delusions and hallucinations. CONCLUSION: There was evidence for a compromised ToM capability in the schizophrenia group on this visual joke task. In this instance this could not be linked to particular symptomatology

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi

    Estimating sea-ice coverage, draft, and velocity in Marguerite Bay (Antarctica) using a subsurface moored upward-looking acoustic Doppler current profiler (ADCP)

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 351-364, doi:10.1016/j.dsr2.2007.11.004.A technique for the analysis of data from a subsurface moored upward-looking acoustic Doppler current profiler (ADCP) to determine ice coverage, draft and velocity is presented and applied to data collected in Marguerite Bay on the western Antarctic Peninsula shelf. This method provides sea ice information when no dedicated upward-looking sonar (ULS) data is available. Ice detection is accomplished using windowed variances of ADCP vertical velocity, vertical error velocity, and surface horizontal speed. ADCP signal correlation and backscatter intensity were poor indicators of the presence of ice at this site. Ice draft is estimated using a combination of ADCP backscatter data, atmospheric and oceanic pressure data, and information about the thermal stratification. This estimate requires corrections to the ADCP-derived range for instrument tilt and sound speed profile. Uncertainties of ± 0.20 m during midwinter and ± 0.40 m when the base of the surface mixed layer is above the ADCP for ice draft are estimated based on (a) a Monte Carlo simulation, (b) uncertainty in the sound speed correction, and (c) performance of the zero-draft estimate during times of known open water. Ice velocity is taken as the ADCP horizontal velocity in the depth bin specified by the range estimate.This work was supported by the NSF Office of Polar Programs through U.S. Southern Ocean GLOBEC grants OPP 99-10092 and OPP 06-23223, the WHOI Smith Chair in Coastal Oceanography, and the WHOI Education Office

    The Developing Female Chorister Voice:Case-Study Evidence of Musical Development

    Get PDF
    The human singing voice changes throughout the lifespan and there are gender-specific variations that need to be taken into account. Life changes in terms of voice are different for females and males and this paper concentrates on the female singing voice in the context of choral singing. Case-study data from three choristers are presented relating to the changing female voice during puberty as part of a longitudinal study of female choristers in a major English Cathedral Choir School. In addition, discussion is presented on important considerations with respect to the female choral singing voice with a particular focus on specific choral aspects during rehearsals and performance

    Using coordinated observations in polarized white light and Faraday rotation to probe the spatial position and magnetic field of an interplanetary sheath

    Get PDF
    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∄ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∄sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties

    Effect of predictive sign of acceleration on heart rate variability in passive translation situation: preliminary evidence using visual and vestibular stimuli in VR environment

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We studied the effects of the presentation of a visual sign that warned subjects of acceleration around the yaw and pitch axes in virtual reality (VR) on their heart rate variability.</p> <p>Methods</p> <p>Synchronization of the immersive virtual reality equipment (CAVE) and motion base system generated a driving scene and provided subjects with dynamic and wide-ranging depth information and vestibular input. The heart rate variability of 21 subjects was measured while the subjects observed a simulated driving scene for 16 minutes under three different conditions.</p> <p>Results</p> <p>When the predictive sign of the acceleration appeared 3500 ms before the acceleration, the index of the activity of the autonomic nervous system (low/high frequency ratio; LF/HF ratio) of subjects did not change much, whereas when no sign appeared the LF/HF ratio increased over the observation time. When the predictive sign of the acceleration appeared 750 ms before the acceleration, no systematic change occurred.</p> <p>Conclusion</p> <p>The visual sign which informed subjects of the acceleration affected the activity of the autonomic nervous system when it appeared long enough before the acceleration. Also, our results showed the importance of the interval between the sign and the event and the relationship between the gradual representation of events and their quantity.</p
    • 

    corecore