3,245 research outputs found

    Do Significant Physiological Strains of Bacillus amylovorus (Burr.) Trev. Exist?

    Get PDF
    From the plant pathologist\u27s viewpoint, more knowledge of the existence of physiological strains of Bacillus amylovorus would be of value. Stewart after a study of the organism in culture calls attention to slight variations in the fermentation reactions of the nine different isolated cultures with which he worked. Therefore, at the suggestion of Dr. H. E. Thomas of Cornell University, N. Y., this work was undertaken in an effort to contribute this information. The portion on acid tolerance has been checked in the laboratories of the State University of Iowa through the courtesy of Drs. G. Hansmann and W. F. Loehwing

    FORESTRY FOR WILDLIFE HABITAT IMPROVEMENT. Nebraska Cooperative Extension Service EC 81-1747, EC 80-1747

    Get PDF
    Wildlife cannot exist without food and protective cover. Natural and planted woodlands contribute significantly to these essentials. This circular describes habitat needs of wildlife, recommends forestry practices for habitat improvement, and gives examples of practices to improve habitat for pheasant, quail, and deer. Variety, rather than uniformity of vegetation, benefits most wildlife species. Management which results in a diverse plant community with many stages of growth can increase the numbers and species of wildlife. Techniques which create improved conditions for woodland wildlife are fundamentally the same as those designed to grow good timber

    Calibration of optical tweezers with positional detection in the back-focal-plane

    Full text link
    We explain and demonstrate a new method of force- and position-calibration for optical tweezers with back-focal-plane photo detection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped ob ject as an input. Thus, neither the viscosity, nor the size of the trapped ob ject, nor its distance to nearby surfaces need to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error-bars. We tested this experimentally, near and far from surfaces. Both position- and force-calibration were accurate to within 3%. To calibrate, we moved the sample with a piezo-electric translation stage, but the laser beam could be moved instead, e.g. by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a micro-sphere in non-constant motion parallel to it. We give such a formula.Comment: Submitted to: Review of Scientific Instruments. 13 pages, 5 figures. Appendix added (hydrodynamically correct calibration

    Long-term yogurt consumption and risk of incident hypertension in adults

    Full text link
    The Nurses' Health Study and Health Professionals Follow-up Study cohorts are supported by grants UM1 CA186107, UM1 CA176726, and UM1 CA167552 from the National Institutes of Health. The current analyses were supported by small grants from the National Dairy Council, the General Mills Bell Institute for Health and Nutrition, and the Boston Nutrition and Obesity Research Center. The Boston Nutrition Obesity Research Center is administratively based at Boston Medical Center and is funded by the National Institutes of Health (NIH/NIDDK) grant P30DK046200. (UM1 CA186107 - National Institutes of Health; UM1 CA176726 - National Institutes of Health; UM1 CA167552 - National Institutes of Health; small grants from the National Dairy Council; General Mills Bell Institute for Health and Nutrition; Boston Nutrition and Obesity Research Center; P30DK046200 - National Institutes of Health (NIH/NIDDK))Accepted manuscrip

    Refinement of the Spitzer Space Telescope Pointing History Based on Image Registration Corrections from Multiple Data Channels

    Get PDF
    Position reconstruction for images acquired by the Infrared Array Camera (IRAC), one of the science instruments onboard the Spitzer Space Telescope, is a multistep procedure that is part of the routine processing done at the Spitzer Science Center (SSC). The IRAC instrument simultaneously images two different sky footprints, each with two independent infrared passbands (channels). The accuracy of the initial Spitzer pointing reconstruction is typically slightly better than 1". The well‐known technique of position matching imaged point sources to even more accurate star catalogs to refine the pointing further is implemented for SSC processing of IRAC data as well. Beyond that, the optimal processing of redundant pointing information from multiple instrument channels to yield an even better solution is also performed at the SSC. Our multichannel data processing approach is particularly beneficial when the star‐catalog matches are sparse in one channel but copious in others. A thorough review of the algorithm as implemented for the Spitzer mission reveals that the mathematical formalism can be fairly easily generalized for application to other astronomy missions. The computation of pointing uncertainties, the interpolation of pointing corrections and their uncertainties between measurements, and the estimation of random‐walk deviations from linearity are special areas of importance when implementing the method. After performing the operations described in this paper on the initial Spitzer pointing, the uncertainty in the observatory pointing history file is reduced 10–15 fold

    Higher BMC and areal BMD in Children and Grandchildren of Individuals with Hip or Knee Replacement

    Get PDF
    The relationship between aBMD and osteoarthritis (OA) remains unclear. We compared aBMD, BMC and bone size among children and grandchildren of Hutterites with hip or knee replacement (n=23 each) to children and grandchildren of age- and sex-matched controls (178 children and 267 grandchildren). There were no differences in anthropometric measures or activity levels between case and control probands, but femoral neck (FN) and spine (LS) aBMD and Z-scores were greater in cases than controls (0.89 vs. 0.80 g/cm2; 1.15 vs. 1.03 g/cm2; 1.5 vs. 0.8; 2.4 vs. 1.2: all por =2 years post-menarcheal or males\u3e or =18 years): 33 were not classified. Post-menarcheal, but not premenarcheal, granddaughters of cases had greater hip, FN and LS aBMD Z-scores (0.7 vs. -0.1; 0.6 vs. -0.1; 0.8 vs. -0.3); greater hip and spine aBMD (1.03 vs. 0.95, 1.10 vs. 0.98 g/cm2); greater femoral neck and spine BMC (4.77 vs. 4.21, 66.7 vs. 55.4 g); and greater spine bone area (60.7 vs. 56.6 cm2) compared to granddaughters of controls (all,

    Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor

    Get PDF
    Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol
    corecore