28 research outputs found

    Oxy-functionalization of nucleophilic rhenium(I) metal carbon bonds catalyzed by selenium(IV)

    Get PDF
    We report that SeO_2 catalyzes the facile oxy-functionalization of (CO)_5Re(I)-Me^(δ−) with IO_4− to generate methanol. Mechanistic studies and DFT calculations reveal that catalysis involves methyl group transfer from Re to the electrophilic Se center followed by oxidation and subsequent reductive functionalization of the resulting CH_3Se(VI) species. Furthermore, (CO)_3Re(I)(Bpy)-R (R = ethyl, n-propyl, and aryl) complexes show analogous transfer to SeO_2 to generate the primary alcohols. This represents a new strategy for the oxy-functionalization of M−R^(δ−) polarized bonds

    Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Get PDF
    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain

    Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors

    Get PDF
    The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process

    Diversity of actions of GnRHs mediated by ligand-induced selective signaling

    Get PDF
    Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the G(q) signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention

    Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging

    No full text
    Arsenic dissolved in water represents a key environmental and health challenge because several million people are under the threat of contamination. In calcareous environments calcite may play an important role in arsenic solubility and transfer in water. Arsenic–calcite interactions remain controversial, especially for As(III) which was proposed to be either incorporated as such, or as As(V) after oxidation. Here, we provide the first time-lapse in situ study of the evolution of the (10–14) calcite cleavage surface morphology during dissolution and growth in the presence of solutions with various amounts of As(III) or As(V) at room temperature and pH range 6–11 using a flow-through cell connected to an atomic force microscope (AFM). Reaction products were then characterized by Raman spectroscopy. In parallel, co-precipitation experiments with either As(III) or As(V) were performed in batch reactors, and the speciation of arsenic in the resulting solids was studied by X-ray absorption spectroscopy (XAS). For As(V), AFM results showed that it interacts strongly with the calcite surface, and XAS results showed that As(V) was mostly incorporated in the calcite structure. For As(III), AFM results showed much less impact on calcite growth and dissolution and less incorporation was observed. This was confirmed by XAS results that indicate that As(III) was partly oxidized into As(V) before being incorporated into calcite and the resulting calcite contained 36% As(III) and 64% As(V). All these experimental results confirm that As(V) has a much stronger interaction with calcite than As(III) and that calcite may represent an important reservoir for arsenic in various geological environments
    corecore