4,555 research outputs found

    Description of isolated macroscopic systems inside quantum mechanics

    Get PDF
    For an isolated macrosystem classical state parameters ζ(t)\zeta(t) are introduced inside a quantum mechanical treatment. By a suitable mathematical representation of the actual preparation procedure in the time interval [T,t0][T,t_0] a statistical operator is constructed as a solution of the Liouville von Neumann equation, exhibiting at time tt the state parameters ζ(t′)\zeta(t'), t0≤t′≤tt_0\leq t' \leq t, and {\it preparation parameters} related to times T≤t′≤t0T \leq t'\leq t_0. Relation with Zubarev's non-equilibrium statistical operator is discussed. A mechanism for memory loss is investigated and time evolution by a semigroup is obtained for a restricted set of relevant observables, slowly varying on a suitable time scale.Comment: 13 pages, latex, romp31 style, no figures, to appear in the Proceedings of the XXXI Symposium on Mathematical Physics (Torun, Poland), to be published in Rep. Math. Phy

    Sucrose assimilation and the role of sucrose transporters in plant wound response

    Get PDF
    Plant cells are commonly exposed to a variety of injuries such as mechanical and herbivore wounding. Wounding is a continual threat to the survival of all organisms and an open wound caused bymechanical or herbivore wounding is a potential infection site for pathogens, thus expression of defense genes at the wound site is a barrier against opportunistic pathogens. Wounding in multicellulareukaryote cells result in marked changes in gene repression that contribute to cell defense and repairs. The sudden changes in cellular metabolism and additional metabolism requirements for these woundedtissues or cells can only be met by an increased utilization of exogenously supplied carbohydrate in the form of sucrose. Sucrose transporters’ involvement in the import of sucrose from the apoplastic cells will be of great significance for the cellular metabolic needs, and also for energy and carbon requirements for the activation of defense responses of the adjacent injured tissues or cells

    Book Reviews

    Get PDF

    Structure and decay at rapid proton capture waiting points

    Full text link
    We investigate the region of the nuclear chart around A≃70A \simeq 70 from a three-body perspective, where we compute reaction rates for the radiative capture of two protons. One key quantity is here the photon dissociation cross section for the inverse process where two protons are liberated from the borromean nucleus by photon bombardment. We find a number of peaks at low photon energy in this cross section where each peak is located at the energy corresponding to population of a three-body resonance. Thus, for these energies the decay or capture processes proceed through these resonances. However, the next step in the dissociation process still has the option of following several paths, that is either sequential decay by emission of one proton at a time with an intermediate two-body resonance as stepping stone, or direct decay into the continuum of both protons simultaneously. The astrophysical reaction rate is obtained by folding of the cross section as function of energy with the occupation probability for a Maxwell-Boltzmann temperature distribution. The reaction rate is then a function of temperature, and of course depending on the underlying three-body bound state and resonance structures. We show that a very simple formula at low temperature reproduces the elaborate numerically computed reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe

    Hadronization corrections to helicity components of the fragmentation function

    Full text link
    In the hadronic decays of Z, gluon emission leads to the appearance of the longitudinal component of the fragmentation function, F_L. Measurement of F_L and the transverse component, F_T, could thus provide an insight into the gluon fragmentation function. However, hadronization corrections at low x can be significant. Here we present a method of accounting for such corrections, using the JETSET event generator as illustration.Comment: 11 pages, 5 figure

    Emergence of clusters: Halos, Efimov states, and experimental signals

    Get PDF
    We investigate emergence of halos and Efimov states in nuclei by use of a newly designed model which combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes 72^{72}Ca (70^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo-configurations emerge from the mean-field structure for three-body binding energy less than ∼100\sim 100keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta-decay.Comment: 5 pages, 5 figures, under revie

    Combined few-body and mean-field model for nuclei

    Full text link
    The challenging nuclear many-body problem is discussed along with classifications and qualitative descriptions of existing methods and models. We present detailed derivations of a new method where cluster correlations co-exist with an underlying mean-field described core-structure. The variation of an antisymmetrized product of cluster and core wave functions and a given nuclear interaction, provide sets of self-consistent equations of motion. After the applications on dripline nuclei we discuss perspectives with improvements and applications. In the conclusion we summarize while emphasizing the merits of consistently treating both short- and large-distance properties, few- and many-body correlations, ordinary nuclear structure, and concepts of halos and Efimov states

    A combined mean-field and three-body model tested on the 26^{26}O-nucleus

    Full text link
    We combine few- and many-body degrees of freedom in a model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core-nucleus surrounded by two valence nucleons. We treat the core in the mean-field approximation and use the same effective Skyrme interaction between both core and valence nucleons. We apply the model to 26^{26}O where we reproduce the known experimental data as well as phenomenological models with more parameters. The decay of the ground state is found to proceed directly into the continuum without effect of the virtual sequential decay through the well reproduced d3/2d_{3/2}-resonance of 25^{25}O.Comment: 5 pages, 5 figures, under revie
    • …
    corecore