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Abstract. The inner tube layer of Pomatoceros americanus has a complex oriented ultrastructure, which cannot be explained by 
the standard granular secretion model, predicting a largely unoriented structure of the tube. In the lamello-fibrillar structure of the 
inner tube layer, the crystallization axis of crystals has a uniform orientation, which is not continuous through successive growth 
increments. The complex biomineral structures of P. americanus suggest a matrix-controlled crystallization model rather than 
solidification of a slurry with calcareous granules deposited on the tube aperture. 
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INTRODUCTION 
 
Among polychaetes, calcareous tubes occur in serpulids, 
sabellids, and cirratulids (Fischer et al. 2000; Vinn et al. 
2008a). Serpulids construct their tubes from a mixture 
of calcium carbonate and an organic matrix (Hedley 
1956a; Neff 1971a, 1971b). Swan (1950) was the first  
to identify the tissues responsible for the secretion of 
calcium carbonate in serpulids. He described a pair of 
exocrine glands embedded in the subepithelial connective 
tissue of the ventro-lateral peristomium under the fold 
of the collar in Ficopomatus enigmaticus (Fauvel, 1923) 
(as Mercierella). Later, detailed histological and histo-
chemical studies of these glands in Pomatoceros triqueter 
(Linnaeus, 1758) were made by Hedley (1956a) and 
Vovelle (1956), who named them calcium-secreting 
glands (respectively glandes à calcaire). The other 
glandular area is the epithelium of the ventral shield 
surrounding the opening of the calcium-secreting glands 
(Hedley 1956b; Neff 1971a, 1971b; Simkiss & Wilbur 
1989). The calcium-secreting glands and their functioning 
have been described in detail for various serpulid species 
(Hedley 1956b; Neff 1971a; Nott & Parkes 1975; Vovelle 
et al. 1991). 

The study by Neff (1971a, 1971b) has been used as a 
�standard� model of serpulid tube formation; he described 
the secretion of calcium carbonate in Pomatoceros 
americanus Day, 1973 (as P. caeruleus (Schmarda 1861)) 
using a transmission electron microscope (TEM). 
According to Neff (1971a), the secretory products of 
the calcium-secreting glands in P. americanus have the 
form of cubic or rhombohedral granules with average 

dimensions of 0.15�0.2 µm on a side. The granules are 
composed of a fibrous organic matrix in which needle-
like low magnesium calcite crystals are deposited (Neff 
1971a). According to this model, the calcareous granules 
contribute importantly to the formation of the tube in 
which the animal lives. The granules reach the exterior 
of the animal as a slurry that solidifies sufficiently 
slowly to allow the undersurface of the collar, which is 
folded back over the aperture of the tube, to mould the 
calcite-saturated mucus, shaping the end of the tube. 
This appears to invoke two new phenomena that are 
more generally associated with the building industry, 
namely, the solidification of previously prepared granules 
and the controlled setting of this material. The resulting 
mineral tube is largely lacking orientation of its fine 
structure (Simkiss & Wilbur 1989). 

Tube formation in sabellids and cirratulids takes 
place by a mineralization system, in which an organic 
matrix and calcium ions are secreted by an epithelium. 
The serpulid opercular plate also is secreted by an 
organic matrix-mediated system (Bubel 1983; Vinn et 
al. 2008c). This plate consists of an outer cuticle and 
two calcified layers, all formed by a single layer of 
epithelial cells; the organic components of the opercular 
plate play a major role in the organization of the inorganic 
components. Oriented structures of the opercular plate 
can be explained by control of an organic matrix (Bubel 
1983). 

Indeed, the majority (54%) of the 44 serpulid species 
studied (out of a total number of about 350 species) 
have an unoriented tube ultrastructure (Vinn et al. 2008b), 
which could be considered as in concordance with the 
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standard granular secretion model. However, serpulids 
possess not exclusively unoriented, but very diverse 
oriented tube ultrastructures as well (Vinn et al. 2008b). 
These oriented tube structures are present in many other 
serpulid species and cannot be explained by the standard 
carbonate slurry model (cf. Weedon 1994). Vinn et al. 
(2008a) have hypothesized that oriented structures in 
serpulid tubes have been secreted in the same ways as in 
mollusc shells, based on their ultrastructural similarity. 
In simple oriented prismatic structures the crystallization 
axis has a uniform orientation and is continuous through 
successive growth increments (Vinn et al. 2008b, 
figs 5A, B, 9I). In complex oriented structures the 
crystallization axis of crystals has a uniform orientation, 
which is not continuous through successive growth 
increments (Vinn et al. 2008b, figs 4E, F, 5C, D, 9J). 
Trends in the evolution of tube ultrastructure in serpulids 
implicate that complex oriented structures have evolved 
from unoriented structures (Vinn et al. 2008b). 

As mentioned above, the species Pomatoceros 
americanus played a crucial role in the research history 
of the tube formation in serpulids, leading to the �standard 
model�. Therefore, the focus of the present paper is 
detailed re-investigation of the situation displayed in this 
species. The aim of this paper is (1) to identify secretory 
granules in the tube ultrastructure of P. americanus 
and (2) to find whether the tube ultrastructure of 
P. americanus is unoriented as would be predicted 
from the standard granular secretion model supposed 
by Neff (1971a) for this species. The ultrastructure of 
P. americanus was compared with that of the congeneric 
P. triqueter, which is known to have a lamello-fibrillar 
tube ultrastructure (Weedon 1994). 
 
 
MATERIAL  AND  METHODS 
 
Material was collected intertidally or by diving, trawling, 
or dredging; it was fixed in (buffered) formalin 4% and 

later transferred to ethanol 70% for museum deposition 
(Table 1). Pomatoceros americanus and P. triqueter tubes 
were cut using a razor blade. Pieces of tubes were then 
oriented and mounted in Canada balsam for machine 
grinding. Sections of tubes were polished and etched  
in a 1% solution of acetic acid for two minutes. All 
preparations were gold sputtered (with a few nano-
meters thick layer of gold) prior to SEM investigation. 
The operculum of Spirobranchus giganteus (Pallas, 
1766) was bleached with NaHCl before SEM. Studies 
were performed on a Hitachi S-4300 SEM, equipped 
with an Inca EDX system, at the Swedish Museum of 
Natural History, Stockholm, and on Zeiss 940D SEM, 
equipped with SAMx SDD EDX, at the Department of 
Geology, University of Tartu. The beam was operated at 
5�10 kV and 1 nA. 
 
 
RESULTS 
 
We did not find secretory granules (0.15�0.2 µm on  
a side), such as described by Neff (1971a), in the tube 
wall of P. americanus (Fig. 1A�D). Instead, the tube  
of P. americanus has two layers, the outer irregularly 
oriented prismatic and the inner lamello-fibrillar. The 
border between these two differently oriented layers is 
transitional. The irregularly oriented prismatic structure 
(Fig. 1C) is formed by elongate crystals of prismatic 
shape, which are irregularly oriented within each growth 
increment. They are 0.5�0.8 µm thick and 2.0�3.0 µm 
long. The lamello-fibrillar structure (Fig. 1B, D) is formed 
by elongate crystals of prismatic shape, which have a 
uniform orientation within each growth increment, but a 
different orientation in adjacent growth increments. They 
are 0.3�0.4 µm thick and 2.0�3.5 µm long. Thin (> 0.5 µm) 
organic sheets, parallel to secretion surface, are present in 
the tube ultrastructure of P. americanus (Fig. 1A�D). 
The sheets are located at an interval of 5�30 µm from 
each other. As opposed to that of P. americanus, the 

 
 

Table 1. Locality information of the studied serpulid specimens 
 

Species Collection number Locality information 

Pomatoceros americanus ZMA V.Pol. 5009 On Argopecten gibbus-shells taken from the trawler 
Ensign, trawled 10 miles east of Bony, R'4' (Knuckle 
Bony) off Cape Lookout Shoals, 10�20 m, 15.03.1971, 
Duke Marine Laboratory, Beaufort, North Carolina, 
U.S.A., legit W. Kirby-Smith, det. G. van Ee, 1978 

P. triqueter TUG 1232-2 Sweden, Tjärnö Marine Biological Laboratory, legit, det. 
T. Dahlgren, 2004 

Spirobranchus giganteus  ZMA  Reef, little sand; 11 m. From limestone and coral, Nether-
lands Antilles, Curaçao, Boca Hulu, SE, 14.09.1970 
legit, det. H. A. ten Hove, Sta. 2041A 
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Fig. 1. A�D, Pomatoceros americanus. A�C, transverse section, polished and treated with 1% acetic acid for 2 min.: A, two-
layered tube, showing a transitional boundary between outer and inner layer; B, inner tube layer with lamello-fibrillar structure,
showing different orientation of crystals in different growth increments and organic sheets; C, outer tube layer with irregularly
oriented prismatic structure. D, inner tube layer with lamello-fibrillar structure, showing organic sheets parallel to growth
increments; longitudinal section, polished and treated with 1% acetic acid for 2 min. E, Pomatoceros triqueter, lamello-fibrillar
structure, showing different orientation of crystals in different growth increments; transverse section, polished and treated with
1% acetic acid for 2 min. F, Spirobranchus giganteus, outer layer of the calcified opercular plate, irregularly oriented prismatic
structure; treated with NaHCl for 20 min. Abbreviations: iop, irregularly oriented prismatic structure; lm, lamello-fibrillar
structure; os, organic sheets. 
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tube of P. triqueter is single-layered and has a lamello-
fibrillar structure only (Fig. 1E). The calcareous operculum 
of Spirobranchus giganteus is composed of an inner 
oriented prismatic and an outer irregularly oriented 
prismatic layer (Fig. 1F). 
 
 
DISCUSSION 
 
We have not found a granular structure (e.g. agglomerates 
of individual needle-shaped crystals) in the tube of 
P. americanus. The entities of the tube of P. americanus 
ultrastructure are crystals, which are an order of 
magnitude larger than that of the secretory granules 
described by Neff (1971a) from the lumen of the calcium-
secreting glands. If the granular slurry model is correct, 
either the secretory granules have to be recrystallized 
into larger entities during transport from the gland to 
deposition or, alternatively, P. americanus possesses a 
different secretion model than proposed by Neff (1971a, 
1971b). This question is even more complicated because 
the dimensions of secretory granules reported in the 
original study by Neff (1971a, figs 14�21) using 
untraditional dimension (150�200 mµ � milli-micro-
metre) have afterwards been reprinted in textbooks on 
biomineralogy as 150�200 µm (e.g. Simkiss & Wilbur 
1989). The size of the granules on photographs in Neff 
(1971a, figs 14�21) is 15�40 mm and, assuming the 
respective magnification shown in the same figures 
(72 000�107 500 times), are, in fact, on average 0.15�
0.40 µm in size, which is at least an order of magnitude 
smaller than the size of crystals observed in the wall of 
P. americanus. 

According to the standard slurry deposition model 
(Simkiss & Wilbur 1989), the tube ultrastructure can 
only be irregularly oriented (unoriented). However, the 
lamello-fibrillar ultrastructure of the inner tube layer  
of P. americanus is a complex oriented structure. The 
lamello-fibrillar structure cannot be explained simply by 
deposition of secretory granules over the tube aperture 
to be moulded in shape by a collar. Weedon (1994) 
suggested that the lamello-fibrillar structure in P. triqueter 
is perhaps the result of the moulding of calcite-saturated 
mucus in forward and backward applications. This 
explanation seems unlikely considering the microscopic 
scale of the granules and the precise orientation of crystals 
in the tube wall of P. triqueter (Fig. 1E). Different tube 
layers could not be treated differently in back and 
forward movements of the calcite-saturated mucus. Thus, 
the occurrence of two layers in P. americanus and even 
three in Hydroides dianthus (Vinn et al. 2008b) cannot 
be explained by the way suggested by Weedon (1994). 
However, hypothetically one could suggest that it could 
be done by compaction of the fibrous organic matrix 
around the elongate crystals during the solidification. 

The latter way is unknown in animal biomineralization 
and we consider it unlikely. We hypothesize here that 
the lamello-fibrillar tube structure in serpulids is formed 
in a similar way as the lamello-fibrillar structure of 
molluscs (Carter et al. 1990), where the organic matrix 
and calcium ions are secreted from a secretory epithelium 
and crystallization is mediated by the organic matrix 
too. The orientation of crystals in the lamello-fibrillar 
structure in P. americanus and P. triqueter is supposed 
to be controlled by molecular mechanisms in the organic 
matrix. We suggest that the outer layer, with its irregularly 
oriented prismatic structure, is in general formed in  
the same way as the lamello-fibrillar layer (e.g. as in 
molluscs), because there is a gradual transition between 
these two layers. The calcareous endplate of the 
operculum of Spirobranchus giganteus, also directly 
secreted by an epithelium (that of the opercular ampulla), 
shows an irregularly oriented prismatic structure too 
(Fig. 1F). It may be relevant that tabulae, as produced 
by the abdomen of P. triqueter (see Vinn et al. 2008b), 
show a fine homogeneous (irregularly oriented) structure 
as well. Hedley (1958) supposed that the ventral 
abdominal epithelium is the main source of the calcium 
involved, maybe supplemented by calcium originating 
from mucous cells in the abdomen. 

There are alternative ways to explain the calcified 
secretory granules described (Neff 1971a) in the lumen 
of the calcium-secreting glands in P. americanus: 
(1) The worm actually produces calcium saturated mucus 

in the glands. The mucus is then deposited on the 
tube aperture, where crystallization of structure is 
controlled by an organic matrix as in molluscs. The 
calcified granules may only be an artifact of fixation 
and formed after the death of the worm. 

(2) If calcified secretory granules are not an artifact of 
fixation, then they must be dissolved and recrystallized 
before deposition of the material on the tube aperture. 
Consecutively, an oriented structure is formed from 
the mucus, regulated by the organic matrix. 

 
 
CONCLUSIONS 
 
Our study shows that a complex oriented ultrastructure 
of the inner tube layer of P. americanus cannot be 
explained by the standard granular secretion model, which 
should have resulted in a largely unoriented structure of 
the tube. Instead, in the lamello-fibrillar structure of the 
inner tube of P. americanus the crystallization axis of 
crystals has a uniform orientation, which is not continuous 
through successive growth increments. We suggest that 
the complex biomineral structures of P. americanus  
imply a matrix-controlled crystallization model rather 
than solidification of a slurry with calcareous granules 
deposited on the tube aperture. 
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Pomatoceros  americanus�e  (Polychaeta,  Serpulidae)  koja  peenstruktuur   
ja  selle  tähendus  serpuliidide  koja  moodustumise  mõistmisel 

 
Olev Vinn, Kalle Kirsimäe ja Harry A. ten Hove 

 
Pomatoceros americanus�e koja sisemine kiht on keeruka orienteeritud struktuuriga, mida ei saa seletada standardse 
granulaarse sekretsiooni mudeli abil, mis eeldab orienteerimata koja struktuuri. P. americanus�e keerukad biomine-
raalsed struktuurid on tõenäoliselt tekkinud orgaanilise maatriksi poolt kontrollitud kristallisatsiooni käigus, mitte 
aga lubigraanulite toru suudmele tsementeerimise teel. 


