We investigate emergence of halos and Efimov states in nuclei by use of a
newly designed model which combines self-consistent mean-field and three-body
descriptions. Recent interest in neutron heavy calcium isotopes makes 72Ca
(70Ca+n+n) an ideal realistic candidate on the neutron dripline, and we
use it as a representative example that illustrates our broadly applicable
conclusions. By smooth variation of the interactions we simulate the crossover
from well-bound systems to structures beyond the threshold of binding, and find
that halo-configurations emerge from the mean-field structure for three-body
binding energy less than ∼100keV. Strong evidence is provided that Efimov
states cannot exist in nuclei. The structure that bears the most resemblance to
an Efimov state is a giant halo extending beyond the neutron-core scattering
length. We show that the observable large-distance decay properties of the wave
function can differ substantially from the bulk part at short distances, and
that this evolution can be traced with our combination of few- and many-body
formalisms. This connection is vital for interpretation of measurements such as
those where an initial state is populated in a reaction or by a beta-decay.Comment: 5 pages, 5 figures, under revie