6 research outputs found

    Synthesis of fluorinated polyesters for nanocapsules formulation as ultrasound contrast agents

    No full text
    Nous avons synthĂ©tisĂ© des polymĂšres possĂ©dant des terminaisons fluorĂ©es afin de formuler des nanocapsules comme agents de contraste ultrasonores (ACUs) pour l’imagerie des tumeurs. Ces nanocapsules sont composĂ©es d’un cƓur de bromure de perfluorooctyle (PFOB), un liquide perfluorĂ© biocompatible et Ă©chogĂšne, et d’une coque polymĂšre possĂ©dant trois blocs d’affinitĂ©s diffĂ©rentes. Le bloc hydrophile de polyĂ©thylĂšne glycol (PEG) prĂ©sent en surface des nanocapsules permet de prolonger leur temps de circulation dans le compartiment sanguin et de favoriser leur accumulation dans les tumeurs par l’effet de permĂ©abilitĂ© et de rĂ©tention accrue. Le bloc hydrophobe de polylactide (PLA) permet de gĂ©nĂ©rer une coque dĂ©gradable plus stable que les membranes de lipides ou de tensioactifs qui composent les ACUs utilisĂ©s en clinique. Finalement, la terminaison fluorĂ©e permet de favoriser l’ancrage du polymĂšre autour de la goutte de liquide perfluorĂ© et d’augmenter l’échogĂ©nicitĂ© des nanocapsules. Deux stratĂ©gies diffĂ©rentes ont Ă©tĂ© dĂ©veloppĂ©es pour introduire ce bloc fluorĂ©. La premiĂšre consistait Ă  synthĂ©tiser un PLA terminĂ© par un chaĂźnon fluorĂ© linĂ©aire court (C3F7 Ă  C13F27) et Ă  le mĂ©langer Ă  un polymĂšre dibloc PLA-PEG pour formuler les nanocapsules. Nous avons montrĂ© que l’efficacitĂ© d’encapsulation du PFOB augmente avec la longueur de chaĂźne fluorĂ©e jusqu’à C8F17. La deuxiĂšme stratĂ©gie consistait Ă  synthĂ©tiser directement un polymĂšre tribloc composĂ© des trois parties PEG, PLA et fluorĂ©e sur la mĂȘme chaĂźne, la partie fluorĂ©e Ă©tant constituĂ©e de 4 Ă  15 chaĂźnons C8F17 pendants (structure en peigne). Des mesures de tension interfaciale ont montrĂ© que ces polymĂšres triblocs s’adsorbent Ă  l’interface PFOB/solvant organique et encapsulent le PFOB plus efficacement que le PLA-PEG non fluorĂ©. La morphologie des capsules est fortement influencĂ©e par le nombre de chaĂźnons fluorĂ©s prĂ©sents dans le polymĂšre et par la quantitĂ© de polymĂšre utilisĂ©e lors de la formulation. Une masse Ă©levĂ©e du polymĂšre contenant 15 chaĂźnons fluorĂ©s favorisera ainsi la formation de nanocapsules possĂ©dant plusieurs cƓurs de PFOB. La diminution de la quantitĂ© de polymĂšre fluorĂ© a finalement permis de produire des capsules avec un seul cƓur, une coque fine, et de forme lĂ©gĂšrement ellipsoĂŻdale. Ces capsules diffusent les ultrasons plus efficacement que les capsules de PLA-PEG non fluorĂ©. Alors que la prĂ©sence de chaĂźnes de PEG attĂ©nue considĂ©rablement la rĂ©ponse acoustique des capsules, l’addition des chaĂźnons fluorĂ©s permet de contrebalancer cet effet. Cette amĂ©lioration provient de plusieurs paramĂštres : l’augmentation de la quantitĂ© de PFOB encapsulĂ©, l’augmentation de la densitĂ© de la capsule, et la diminution de l’épaisseur de la coque des capsules. Par ailleurs, les polymĂšres fluorĂ©s et leurs produits de dĂ©gradation n’induisent pas de cytotoxicitĂ© in vitro comparĂ© Ă  leurs analogues non fluorĂ©s. Ces nanocapsules apparaissent donc comme des agents de contraste prometteurs pour permettre de mieux visualiser les tumeurs par Ă©chographie.We have synthesized polymers with fluorinated end chains to formulate nanocapsules as ultrasound contrast agents (UCAs) for tumor imaging. These nanocapsules are composed of a core of perfluorooctyl bromide (PFOB), a biocompatible and echogenic perfluorinated liquid, and a polymeric shell made of three blocks of different affinities. The hydrophilic block of poly(ethylene glycol) (PEG) at the surface of the nanocapsules allows increasing their circulation time in the blood and promoting their accumulation into tumors by the enhanced permeation and retention effect. The hydrophobic block of polylactide (PLA) allows generating a degradable shell with higher stability as compared to the surfactant- and lipid-based membranes of commercialized UCAs. Finally, the fluorinated block favors the wetting of the polymer around the perfluorinated liquid and improves the nanocapsules echogenicity. Two different strategies have been developed to introduce this fluorinated part. The first one consisted in synthesizing a PLA terminated by a short linear fluorinated chain (from C3F7 to C13F27) and mixing it with a PLA-PEG diblock polymer to formulate the nanocapsules. The encapsulation efficiency of PFOB was found to increase with the fluorinated chain length up to C8F17. The second strategy consisted in synthesizing directly a triblock polymer composed of the three parts (PEG, PLA and fluorinated) on the same chain, the fluorinated part consisting of 4 to 15 pendant C8F17 chains (with a comb-like structure). Interfacial tension measurements showed that these triblock polymers adsorb at the PFOB/organic solvent interface and encapsulate PFOB more efficiently than non-fluorinated PLA-PEG. The capsules morphology was strongly influenced by the number of fluorinated chains and the amount of polymer used for formulation. Formulation with a high quantity of the polymer containing 15 fluorinated pendants thus favored the formation of nanocapsules with several PFOB cores. Decreasing the fluorinated polymer quantity then allowed producing capsules with a single core, a thin shell, and a slightly ellipsoidal shape. These capsules were more efficient ultrasound scatterers than non-fluorinated PLA-PEG capsules. While the presence of PEG chains considerably attenuates the capsules acoustic response, addition of fluorinated chains seems to counterbalance this effect. Such improvement arises from several contributions: a higher encapsulated PFOB content, a higher density due to the presence of fluorinated chains, and a lower shell thickness. Furthermore, the fluorinated polymers and their degradation products did not induce any in vitro cytotoxicity as compared to their non-fluorinated analogues. These nanocapsules therefore appear as promising UCAs for tumor imaging

    SynthÚse de polyesters fluorés pour la formulation de nanocapsules comme agents de contraste ultrasonores

    Get PDF
    We have synthesized polymers with fluorinated end chains to formulate nanocapsules as ultrasound contrast agents (UCAs) for tumor imaging. These nanocapsules are composed of a core of perfluorooctyl bromide (PFOB), a biocompatible and echogenic perfluorinated liquid, and a polymeric shell made of three blocks of different affinities. The hydrophilic block of poly(ethylene glycol) (PEG) at the surface of the nanocapsules allows increasing their circulation time in the blood and promoting their accumulation into tumors by the enhanced permeation and retention effect. The hydrophobic block of polylactide (PLA) allows generating a degradable shell with higher stability as compared to the surfactant- and lipid-based membranes of commercialized UCAs. Finally, the fluorinated block favors the wetting of the polymer around the perfluorinated liquid and improves the nanocapsules echogenicity. Two different strategies have been developed to introduce this fluorinated part. The first one consisted in synthesizing a PLA terminated by a short linear fluorinated chain (from C3F7 to C13F27) and mixing it with a PLA-PEG diblock polymer to formulate the nanocapsules. The encapsulation efficiency of PFOB was found to increase with the fluorinated chain length up to C8F17. The second strategy consisted in synthesizing directly a triblock polymer composed of the three parts (PEG, PLA and fluorinated) on the same chain, the fluorinated part consisting of 4 to 15 pendant C8F17 chains (with a comb-like structure). Interfacial tension measurements showed that these triblock polymers adsorb at the PFOB/organic solvent interface and encapsulate PFOB more efficiently than non-fluorinated PLA-PEG. The capsules morphology was strongly influenced by the number of fluorinated chains and the amount of polymer used for formulation. Formulation with a high quantity of the polymer containing 15 fluorinated pendants thus favored the formation of nanocapsules with several PFOB cores. Decreasing the fluorinated polymer quantity then allowed producing capsules with a single core, a thin shell, and a slightly ellipsoidal shape. These capsules were more efficient ultrasound scatterers than non-fluorinated PLA-PEG capsules. While the presence of PEG chains considerably attenuates the capsules acoustic response, addition of fluorinated chains seems to counterbalance this effect. Such improvement arises from several contributions: a higher encapsulated PFOB content, a higher density due to the presence of fluorinated chains, and a lower shell thickness. Furthermore, the fluorinated polymers and their degradation products did not induce any in vitro cytotoxicity as compared to their non-fluorinated analogues. These nanocapsules therefore appear as promising UCAs for tumor imaging.Nous avons synthĂ©tisĂ© des polymĂšres possĂ©dant des terminaisons fluorĂ©es afin de formuler des nanocapsules comme agents de contraste ultrasonores (ACUs) pour l’imagerie des tumeurs. Ces nanocapsules sont composĂ©es d’un cƓur de bromure de perfluorooctyle (PFOB), un liquide perfluorĂ© biocompatible et Ă©chogĂšne, et d’une coque polymĂšre possĂ©dant trois blocs d’affinitĂ©s diffĂ©rentes. Le bloc hydrophile de polyĂ©thylĂšne glycol (PEG) prĂ©sent en surface des nanocapsules permet de prolonger leur temps de circulation dans le compartiment sanguin et de favoriser leur accumulation dans les tumeurs par l’effet de permĂ©abilitĂ© et de rĂ©tention accrue. Le bloc hydrophobe de polylactide (PLA) permet de gĂ©nĂ©rer une coque dĂ©gradable plus stable que les membranes de lipides ou de tensioactifs qui composent les ACUs utilisĂ©s en clinique. Finalement, la terminaison fluorĂ©e permet de favoriser l’ancrage du polymĂšre autour de la goutte de liquide perfluorĂ© et d’augmenter l’échogĂ©nicitĂ© des nanocapsules. Deux stratĂ©gies diffĂ©rentes ont Ă©tĂ© dĂ©veloppĂ©es pour introduire ce bloc fluorĂ©. La premiĂšre consistait Ă  synthĂ©tiser un PLA terminĂ© par un chaĂźnon fluorĂ© linĂ©aire court (C3F7 Ă  C13F27) et Ă  le mĂ©langer Ă  un polymĂšre dibloc PLA-PEG pour formuler les nanocapsules. Nous avons montrĂ© que l’efficacitĂ© d’encapsulation du PFOB augmente avec la longueur de chaĂźne fluorĂ©e jusqu’à C8F17. La deuxiĂšme stratĂ©gie consistait Ă  synthĂ©tiser directement un polymĂšre tribloc composĂ© des trois parties PEG, PLA et fluorĂ©e sur la mĂȘme chaĂźne, la partie fluorĂ©e Ă©tant constituĂ©e de 4 Ă  15 chaĂźnons C8F17 pendants (structure en peigne). Des mesures de tension interfaciale ont montrĂ© que ces polymĂšres triblocs s’adsorbent Ă  l’interface PFOB/solvant organique et encapsulent le PFOB plus efficacement que le PLA-PEG non fluorĂ©. La morphologie des capsules est fortement influencĂ©e par le nombre de chaĂźnons fluorĂ©s prĂ©sents dans le polymĂšre et par la quantitĂ© de polymĂšre utilisĂ©e lors de la formulation. Une masse Ă©levĂ©e du polymĂšre contenant 15 chaĂźnons fluorĂ©s favorisera ainsi la formation de nanocapsules possĂ©dant plusieurs cƓurs de PFOB. La diminution de la quantitĂ© de polymĂšre fluorĂ© a finalement permis de produire des capsules avec un seul cƓur, une coque fine, et de forme lĂ©gĂšrement ellipsoĂŻdale. Ces capsules diffusent les ultrasons plus efficacement que les capsules de PLA-PEG non fluorĂ©. Alors que la prĂ©sence de chaĂźnes de PEG attĂ©nue considĂ©rablement la rĂ©ponse acoustique des capsules, l’addition des chaĂźnons fluorĂ©s permet de contrebalancer cet effet. Cette amĂ©lioration provient de plusieurs paramĂštres : l’augmentation de la quantitĂ© de PFOB encapsulĂ©, l’augmentation de la densitĂ© de la capsule, et la diminution de l’épaisseur de la coque des capsules. Par ailleurs, les polymĂšres fluorĂ©s et leurs produits de dĂ©gradation n’induisent pas de cytotoxicitĂ© in vitro comparĂ© Ă  leurs analogues non fluorĂ©s. Ces nanocapsules apparaissent donc comme des agents de contraste prometteurs pour permettre de mieux visualiser les tumeurs par Ă©chographie

    End-chain fluorination of polyesters favors perfluorooctyl bromide encapsulation into echogenic PEGylated nanocapsules

    No full text
    International audiencePerfluorinated end-capped polylactides (PLAs) with various perfluorinated chain lengths from C3F7 to C13F27 were synthesized and formulated into PEGylated nanocapsules of perfluorooctyl bromide (PFOB) to be used as ultrasound contrast agents (UCAs). We show that the perfluorinated end groups do not reduce the interfacial tension between PFOB and the organic solvent used during formulation and do not allow a significant reduction of shell thickness (Small angle neutron scattering (SANS) experiments). However, the PFOB encapsulation efficiency increases with the fluorinated chain length until C8F17. This suggests the possible presence of favorable fluorophilic interactions between PFOB and perfluorinated end groups. In addition, nanocapsules formulated with different fluorinated polymers do not promote any specific toxicity in vitro compared to non-fluorinated PLAs. Ultrasound imaging performed on samples presenting the lowest thickness values, namely nanocapsules made from 50% PLA-C6F13/50% polylactide-b-poly(ethylene glycol) (PLA-PEG) and pure PLA-PEG nanocapsules, shows that fluorinated nanocapsules exhibit a higher ultrasound contrast enhancement in vitro most probably thanks to the higher PFOB content and density arising from polymer fluorination. This highlights the benefit of fluorination for improving the echogenicity of nano-sized ultrasound contrast agents

    Comb-Like Fluorophilic-Lipophilic-Hydrophilic Polymers for Nanocapsules as Ultrasound Contrast Agents

    Get PDF
    International audienceImaging the enhanced permeation and retention effect by ultrasound is hindered by the large size of commercial ultrasound contrast agents (UCAs). To obtain nanosized UCAs, triblock copolymers of poly(ethylene glycol)-polylactide-poly(1H,1H,2H,2H-heptadecafluorodecyl methacrylate) (PEG-PLA-PFMA) with distinct numbers of perfluorinated pendant chains (5, 10, or 20) are synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization. Nanocapsules (NCs) containing perfluorooctyl bromide (PFOB) intended as UCAs are obtained with a 2-fold increase in PFOB encapsulation efficiency in fluorinated NCs as compared with plain PEG-PLA NCs thanks to fluorous interactions. NC morphology is strongly influenced by the number of perfluorinated chains and the amount of polymer used for formulation, leading to peculiar capsules with several PFOB cores at high PEG-PLA-PFMA 20 amount and single-cored NCs with a thinner shell at low fluorinated polymer amount, as confirmed by small-angle neutron scattering. Finally, fluorinated NCs yield higher in vitro ultrasound signal compared with PEG-PLA NCs, and no in vitro cytotoxicity is induced by fluorinated polymers and their degradation products. Our results highlight the benefit of adding comb-like fluorinated blocks in PEG-PLA polymers to modify the nanostructure and enhance the echogenicity of nanocapsules intended as UCAs
    corecore