295 research outputs found

    Association of brain network dynamics with plasma biomarkers in subjective memory complainers

    Get PDF
    Using a single integrated analysis, we examined the relationship between brain networks and molecular pathways in a cohort of elderly individuals at risk for Alzheimer's disease. In 205 subjective memory complainers (124 females, mean age: 75.7 ± 3.4), individual functional connectome was computed for a total of 3081 functional connections (set A) and 6 core plasma biomarkers of Alzheimer's disease (set B) were assessed. Partial least squares correlation analysis identified one dimension of population covariation between the 2 sets (p < 0.006), which we named bioneural mode. Five core plasma biomarkers and 190 functional connections presented bootstrap ratios greater than the critical value |1.96|. T-tau protein showed a trend toward significance (bootstrap resampling = 1.64). The salience, the language, the visuospatial, and the default mode networks were the strongest significant networks. We detected a strong association between network dynamics and core pathophysiological blood biomarkers. Innovative composite biomarkers, such as the bioneural mode, are promising to provide outcomes and better inform drug development and clinical practice for neurodegenerative diseases

    Outcome of Ph negative myeloproliferative neoplasms transforming to accelerated or leukemic phase

    Get PDF
    Myeloproliferative neoplasms (MPN) are chronic disorders that can sometimes evolve into accelerated or leukemic phases. We retrospectively identified 122 patients with such blastic phases. The overall median survival was four months: 10.2 months for patients treated with intensive treatments compared to three months for best supportive care (p = .005). Azacytidine, intensive chemotherapies, or allogeneic stem cell transplantation gave the highest median survivals with 9, 10.2, and 19.4 months, respectively. Accelerated phases (AP) had a longer median survival compared to acute leukemia (4.8 months vs. 3.1 months; p = .02). In this retrospective and observational study, we observe that the longest survivals are seen in patients eligible for intensive treatments. Azacytidine shows interesting results in patients non-fit for intensive chemotherapy. Supportive care should probably be restricted to elderly patients and those with unfavorable karyotype. An early diagnosis of AP could also result in a better survival rate

    A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    Get PDF
    While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm

    A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity

    Get PDF
    Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples

    The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death

    Get PDF
    Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H2O2 to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H2O2 for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repair–degradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H2O2-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed

    Awareness of cognitive decline trajectories in asymptomatic individuals at risk for AD

    Get PDF
    Background: Lack of awareness of cognitive decline (ACD) is common in late-stage Alzheimer’s disease (AD). Recent studies showed that ACD can also be reduced in the early stages. Methods: We described different trends of evolution of ACD over 3 years in a cohort of memory-complainers and their association to amyloid burden and brain metabolism. We studied the impact of ACD at baseline on cognitive scores’ evolution and the association between longitudinal changes in ACD and in cognitive score. Results: 76.8% of subjects constantly had an accurate ACD (reference class). 18.95% showed a steadily heightened ACD and were comparable to those with accurate ACD in terms of demographic characteristics and AD biomarkers. 4.25% constantly showed low ACD, had significantly higher amyloid burden than the reference class, and were mostly men. We found no overall effect of baseline ACD on cognitive scores’ evolution and no association between longitudinal changes in ACD and in cognitive scores. Conclusions: ACD begins to decrease during the preclinical phase in a group of individuals, who are of great interest and need to be further characterized. Trial registration: The present study was conducted as part of the INSIGHT-PreAD study. The identification number of INSIGHT-PreAD study (ID-RCB) is 2012-A01731-42

    The use of measured genotype information in the analysis of quantitative phenotypes in man.

    Full text link
    We have begun a measured genotype approach to the genetic analysis of lipid and lipoprotein variability. This approach enables one to simultaneously estimate the frequencies and effects of alleles at specific loci along with the residual polygenetic variance component. In this study we consider the contribution of three common alleles at the locus coding for apolipoprotein E to interindividual variation of total cholesterol, betalipoprotein, and triglyceride levels. A sample of 102 nuclear families consisting of 434 individuals was studied. The frequencies of the ε2, ε3, and ε4 alleles in this sample are 0·137,0·740, and 0·123, respectively. In separate analyses of cholesterol and betalipoprotein levels, a complete model that includes the effects of the six apo E genotypes, unmeasured polygenes, and individual specific environmental effects fits these data significantly better than a reduced model that does not include the effects of the apo E polymorphism or a reduced model that does not include the effects of polygenes. On the average the ε2 allele lowers total cholesterol and betalipoprotein levels by 0·425 mmol/l and 0·811 units, respectively. The ε4 allele is associated with an average increase of these phenotypes by 0·255 mmol/l and 0·628 units, respectively. Simultaneous estimates of the interindividual variability of total cholesterol levels attributable to the apo E polymorphism and to residual polygenic effects are 8% and 56%, respectively. For betalipoprotein levels, we simultaneously estimate these values to be 7% and 42%, respectively. A reduced model including the effects of polygenes but not the effects of the apo E polymorphism fitted the triglyceride data as well as the complete model. The estimate of the fraction of interindividual variability associated with polygenetic effects was 26.5%. We review our present understanding of the genetic architecture underlying variability of cholesterol levels in the population at large and infer that the majority of the genetic variability may be accounted for by polymorphic gene loci with moderate effects on cholesterol levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65212/1/j.1469-1809.1987.tb00874.x.pd
    corecore